
The tool of thought for expert programming

Release Notes
Version 12.0

Copyright 1982-2008 by Dyalog Limited.

All rights reserved.

Version 12.0.3

First Edition July 2008

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyalog Limited, South Barn, Minchens Court, Minchens

Lane, Bramley, Hampshire, RG26 5BH, United Kingdom.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

TRADEMARKS:

Intel, 386 and 486 are registered trademarks of Intel Corporation.
IBM is a registered trademark of International Business Machines Corporation.

Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.

POSTSCRIPT is a registered trademark of Adobe Systems, Inc.
SQAPL is copyright of Insight Systems ApS.

The Dyalog APL True Type font is the copyright of Adrian Smith.

TrueType is a registered trademark of Apple Computer, Inc.
UNIX is a trademark of X/Open Ltd.

Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

 iii

Contents

Contents ... iii

C H A P T E R 1 Introduction..1
Classic and Unicode Editions...1
Component Files ..1
Development Environment...2
Additional Tools...3
SALTed Utility Libraries ...4
Miscellaneous...5
System Requirements ...6
Converting to Unicode ...7
Interoperability and Compatibility ...9

C H A P T E R 2 Unicode Support (Unicode Edition only)...................................13
Introduction ..13
Keyboard Input...15
Character Usage and Restrictions...17
Workspace and Performance Considerations ...18
Enhancements to �NA ..19
Changes to �DR ..20
Unicode System Functions and Variables ..21
Reading and Writing Unicode Native Files..22

C H A P T E R 3 Language Enhancements ..25
New and Revised Primitive & System Functions...25

Grade Down (Monadic): R��Y ...26
Grade Up (Monadic): R�	Y ...28
Underscored Alphabetic Characters: R��Ⓐ ..30
Atomic Vector: R��AV...31
Atomic Vector - Unicode: �AVU ...32
Data Representation (Monadic): R��DR Y ..34
Data Representation (Dyadic):............... R�X �DR Y ...35
File Copy: .. R�X �FCOPY Y36
File Create: {R}�X �FCREATE Y.........................37
File Properties: R�X �FPROPS Y................................38
Map File: ... R�{X}�MAP Y40
Name Association: {R}�{X}�NA Y42
Native File Append: {R}�X �NAPPEND Y.........................68
Native File Read: R��NREAD Y.......................................69
Native File Replace: {R}�X �NREPLACE Y70

 Contents

iv

Native File Translate:{R}�{X}�NXLATE Y 72
Terminal Control:(�ML) R��TC 73
Unicode Convert:R�{X} �UCS Y.................................. 74

C H A P T E R 4 New Session Features.. 77
APL Keyboard ... 77
On-Screen Keyboard.. 84
Language Bar... 86
New Help System and Documentation Center... 88
New Configuration Dialogs ... 89
Edit Window Tools.. 93
SharpPlot Graphics .. 94

C H A P T E R 5 Unicode and the Dyalog GUI.. 99

KeyPressEvent 22 .. 100

Index.. 103

 1

C H A P T E R 1

Introduction

Classic and Unicode Editions
The defining feature of Version 12.0 is support for Unicode character data. This

necessarily entails a change in the internal format of character arrays stored in the

workspace and on component files and in external variables. This in turn means that

the adoption of Unicode may require code changes and data conversions in

applications.

For this reason, Version 12.0 and a limited number of future Versions of Dyalog will

be available in two separate editions; Unicode and Classic.

• The Unicode edition is intended for users who need to develop Unicode

applications now, and are prepared to make the necessary (usually small)

changes to existing applications in order to support new Unicode character

types.

• The Classic edition is intended for customers who want to take advantage of

other product enhancements, but do not wish to use Unicode at this time.

The two different editions are maintained from the same source code, and every effort

will be made to ensure that they are identical except for the handling of character

arrays, and the transfer of data into and out of the workspace.

Component Files
Version 12.0 introduces two new options for Component Files; journaling and Unicode

support.

Journaling File System
Version 12.0 allows journaling to be enabled for selected component files (see

�FPROPS). When journaling is enabled, files are updated using a journal which

effectively prevents system or network failures from causing file damage. Enabling

journaling will cause file write operations to run a little slower (the exact impact on

performance will depend on the specific file operations being performed).

 Dyalog APL/W Version 12.0 Release Notes 2

Versions of Dyalog prior to Version 12.0 will not be able to access files which have

journaling enabled, but journaling can be switched off if this is necessary (see

�FPROPS).

Unicode Support
64-bit component files now possess a Unicode Property which determines whether or

not character data will be stored as Unicode character data or using the internal

representation employed by all previous Versions of Dyalog and by Version 12.0

Classic Edition (data type 82).

32-bit component files do not have this property and may not contain Unicode

character data.

�FCOPY�FCOPY�FCOPY�FCOPY System Function
A new system function, �FCOPY, is provided. This may be used to generate 64-bit

component files from 32-bit component files, and as a generally useful tool to copy

component files. The key point is that �FCOPY replicates component time-stamps and

user information in the files.

Development Environment

Integrated APL Keyboard
Unicode Edition supports the use of standard Windows keyboards that have the

additional capability to generate APL characters when the user presses Ctrl, Alt, AltGr

(or some other combination of meta keys) in combination with the normal character

keys.

Version 12.0 is supplied with two sets of such keyboards (one using Ctrl and one using

AltGr) for a range of different languages. These keyboards were created using the

Microsoft Keyboard Layout Creator (MSKLC) and you may use the same tool to

customise one of the supplied keyboards or to create a new one.

On-Screen Keyboard
Included with Dyalog APL Version 12.0 Unicode Edition is the Comfort On-Screen

Keyboard 2.1 which has been specially extended for use with Dyalog APL and is

distributed under a licence agreement with Comfort Software. The On-Screen

keyboard is a really useful tool that works with any Windows application and replaces

Kibitzer in the Unicode Edition. Kibitzer remains part of the Classic Edition.

 Introduction 3

APL Language Bar
Version 12.0 provides an optional Window which is docked to the Session Window, to

make it easy to pick APL symbols without using the keyboard. Furthermore, if you

hover the mouse pointer over a symbol in the APL Language Bar, a pop-up tip is

displayed to remind you of its usage.

Built-In SharpPlot Graphics
Initially only in the 32-bit Windows version, there are some new buttons on the

Session toolbar which display graphical images of the contents of the current object

using SharpPlot

Additional Tools

CausewayPro, RainPro, and NewLeaf
In April 2007, Dyalog acquired the Causeway range of productivity tools for APL

developers. These tools are now bundled with Dyalog, starting with Version 12.0 for

32-bit Windows.

• RainPro is a graphics package which produces high quality graphs for

business and technical applications.

• NewLeaf is a printing utility which can produce output in PDF and a number

of other popular formats.

• CausewayPro is a screen designer and application builder for simple

applications.

 Dyalog APL/W Version 12.0 Release Notes 4

Conga
Conga, also known as the Dyalog Remote Communicator, is a tool for communication

between applications. Conga can be used to transfer APL Arrays between two Dyalog

applications which are both using Conga, but it can also be used to exchange messages

with other partners like HTTP Servers (also known as Web Servers), Web Browsers, or

any other web clients or servers including Telnet, SMTP, POP3 and so forth.

Uses of Conga include, but are not limited to the following:

• Retrieving information from, or posting data to, the internet.

• Accessing internet-based services like FTP, SMTP, or telnet

• Writing an APL application that acts as a Web (HTTP) Server, Mail Server or

any other kind of service available over an intranet or the internet.

• APL Remote Procedure Call servers which receive APL arrays from client

applications, process data, and return APL arrays as the result.

Conga provides a significantly simpler application programming interface compared to

the use of TCPSocket objects, and includes support for secure communications using

SSL.

SALTed Utility Libraries
The Simple APL Library Toolkit (SALT) was introduced as an experimental tool with

version 11.0. Starting with Version 12.0, Dyalog will gradually move towards using

SALT and UTF-8 script files as the distribution mechanism for utilities and code

samples. For a time, APL code will be distributed using both workspaces and the UTF-

8 script files supported by SALT. In the future, SALT will become the preferred

mechanism for this.

Version 12.0 includes tools and documentation on using SALT in combination with

SubVersion, a popular source code management system. A public SubVersion server

hosted by Dyalog, will allow users to collaborate on the development of open source,

shared code libraries.

 Introduction 5

Miscellaneous

Performance Improvements for Set Functions
Dyadic Ι and other set functions (!"#$) are significantly faster for certain arguments.

Matrix Iota idiom
The matrix iota idiom M{(%Α)Ι%Ω}M which used only to operate on character

matrices, now operates on any matrices.

New idiom
There is a new idiom Catenate To (,�) which optimises repeated catenation of a

scalar or vector to a vector.

Atomic Vector Index idiom
The atomic vector index idiom �AVΙCA is is not implemented in Unicode Edition, and

should be replaced in both Editions by �UCS.

Default Address Size for �FCREATE�FCREATE�FCREATE�FCREATE
From Version 12.0 onwards, the default address size for a component file is 64. In

previous Versions it was 32.

The address size is of a component file is an optional parameter specified in the right

argument of �FCREATE. A value of 32 causes the internal component addresses to be

represented by 32-bit values which allow a maximum file size of 4GB. A value of 64

(which is now the default) causes the internal component addresses to be represented

by 64-bit values which allows file sizes up to operating system limits.

Note that a 32-bit component file may not contain Unicode character data.

 Dyalog APL/W Version 12.0 Release Notes 6

System Requirements

Microsoft Windows
Dyalog APL Version 12.0 supports the following Versions of Windows:

• Windows Vista

• Windows XP

• Windows 2000

• Windows Server 2003

Note that Dyalog APL Version 12.0 is not supported under Windows 95, Windows 98,

Windows ME or Windows NT4.

Microsoft .Net Interface
Dyalog APL Version 12.0 ,Net Interface requires Version 2.0 or 3.0 of the Microsoft

.Net Framework. It does not operate with .Net Version 1.0.

 Introduction 7

Converting to Unicode
The adoption of Unicode is an important milestone in the evolution of Dyalog APL and

the change to the way that character data is represented is fundamental. Although we

have tried to minimise the impact, the requirement for users to make some changes in

application code is inevitable.

If you use any of the features listed below, you will probably have to change your code

to convert to Version 12.0 Unicode Edition.

• Monadic Grade Up and Grade Down

• Name Association

• Data Representation

• Native File Operations

• Custom written DLLs and Auxiliary Processors

• Mapped Files

• External Data

Monadic Grade Up and Grade Down
Monadic Grade Up and Grade Down are based on the internal representation of

characters. This means that Unicode arrays will sort in a different order than AVcode

arrays. For example 	'aA' returns (2 1) in the Unicode Edition and (1 2) in the

Classic Edition and all previous versions of Dyalog APL.

It will be necessary to re-evaluate the use of monadic 	 and � in Unicode Edition.

Backwards compatibility and compatibility with Classic Edition can be achieved (if

desired) by supplying �AV as a left argument.

Name Association
Windows DLLs typically contain two versions of functions that process character

arguments; one for ASCII and one for Unicode. They are distinguished by appending

either "A" (ASCII) or "W" (Wide) to the name of the function in the argument to �NA.

For example, the specific name for the MessageBox() function is MessageBoxA

(ASCII) or MessageBoxW (Unicode).To convert to Unicode Edition, You will have

to change all your �NA statements that specify "A" as the function suffix.

 Dyalog APL/W Version 12.0 Release Notes 8

Data Representation
In the Unicode Edition, the data type for character arrays is 80, 160 or 320; and not 82.

This means that the results from �DR will change. In particular, code which determines

whether an array is a character array using expressions like {82=�DR Ω} will not

work in the Unicode Edition.

Native File Operations
Although the default data type for file operations involving character arrays will

remain unchanged (80), in converting to Unicode Edition you should consider

changing your code to handle characters that are not present in ⒶAVU. You may need

to specify different data types for �NAPPEND, �NREPLACE, and �NREAD.

Custom DLLs and Auxiliary Processors
Custom written DLLs and Auxiliary Processors which receive and return data in

internal APL format need to be rewritten to recognise and use the new data types. Data

type 82 may be returned and will be translated by Version 12.0. Thus, if an AP or DLL

recognizes all the character types, it can work with both the Unicode and Classic

Editions.

Mapped Files
Character data in raw mapped files will be interpreted differently in Unicode Edition.

External Data
If you start using Unicode characters which are not in ⒶAVU in your application, and

you use external forms of storage like SQL databases or native files, you need to

consider which representation, or encoding, that you wish to use. For relational

databases, SQAPL supports new Unicode data types, but your database may not have

native support for these types. Very often, an encoding called UTF-8 is used to store

Unicode characters, both in flat files but also in relational databases which do not have

“native” Unicode support.

Version 12.0 provides tools for converting data to and from UTF-8, but you need to

decide on a format and possibly convert your existing databases to use new data types

and representations. If you use a lot of external data, these conversions may require

more planning and implementation work than the changes required to move APL

application code to the Unicode edition.

 Introduction 9

Interoperability and Compatibility

Introduction
Workspaces and component files are stored on disk in a binary format (illegible to text

editors). This format differs between machine architectures and among versions of

Dyalog. For example a file component written by a PC will almost certainly have an

internal format that is different from one written by a UNIX machine. Similarly, a

workspace saved from Dyalog Version 12 will differ internally from one saved by a

previous version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able

to interoperate by sharing workspaces and component files. However, this is not

always possible. For example, if a new internal data structure is introduced in a

particular version of Dyalog APL, previous versions could not be expected to make

sense of it. In this case the load (or copy) from the older version would fail with the

message:

 this WS requires a later version of the interpreter.

Similarly, large (64-bit-addressing) component files are inaccessible to versions of the

interpreter that pre-dated their introduction.

The second item in the right argument of �FCREATE determines the addressing type

of the file.

 'small'�fcreate 1 32 ? create small file.
 'large'�fcreate 1 64 ? create large file.

If the second item is missing, the file type defaults to 64-bit-addressing.

From Dyalog APL Version 11 onwards, there are two separate versions of programs

for 32-bit and 64-bit machine architectures.

Interoperability is summed up in the following tables. Table rows show the version that

is attempting to access the file or workspace and columns show the version that saved

it:

This version can access files created by this version E
%

The row and column titles show the Dyalog version 10.0, 10.1, etc; (32) and (64)

indicate a version running on a 32-bit or 64-bit machine architecture, respectively.

 Dyalog APL/W Version 12.0 Release Notes 10

Implementation
The following tables document compatibility between different versions of Dyalog

APL. Each row represents a system which is accessing or receiving data, each column

represents a system which has saved (or created, or sent) the data.

In each cell, “Yes” means that all data can be transferred successfully. “-“ means that

data cannot be accessed. “~” followed by one or more letters means that data can be

read, with one or more exceptions:

o Cannot read �ORs. Note that �NULL is represented as a namespace.

t Cannot tie files created on machines with different byte ordering.

r Cannot read a component with different byte ordering.

w Can read from but cannot write to files created on machines with different byte

ordering (attempting to write generates FILE ACCESS ERROR).

u Cannot tie a file with the Unicode property, cannot read components containing

Unicode data. For sockets: Cannot read data in encoding Unicode.

j Cannot tie a file with journaling enabled. Note that no versions prior to Version

12.0 can tie a journaled file.

In general, data is written, saved or transmitted in the format that is native to the writer.

Readers do the work of any necessary translation. The exceptions to this rule at that:

- A 64-bit system writing to a 32-bit file will write components in 32-bit format

- Version 12 and above will write character data in either Unicode or non-Unicode

format, depending on the Unicode bit of the file. 32-bit files are always non-

Unicode.

Workspaces
Workspaces cannot be loaded if saved by “higher” versions.

 10.0 10.1 11.0(32) 11.0(64) 12.0 (32) 12.0 (64)

10.0 Yes - - - - -

10.1 Yes Yes - - - -

11.0 (32) Yes Yes Yes Yes - -

11.0 (64) - Yes Yes Yes - -

12.0 (32) Yes Yes Yes Yes Yes Yes

12.0 (64) - Yes Yes Yes Yes Yes

 Introduction 11

Small (32-bit) Component files and External
Variables
Small component files are limited in size to 4GB and are limited to having the same

architecture in all components.

 10.0 10.1 11.0 12.0

10.0 ~t ~t ~ot ~otj

10.1 ~t ~t ~ot ~otj

11.0 ~w ~w ~w ~owj

12.0 ~w ~w ~w ~w

Large (64-bit) Component files
Large component files were introduced in version 10.1, and are the default architecture

used by 12.0. In large component files, each component has its own architecture

information (byte order, 32/64 data size, unicode).

 10.1 11.0 12.0

10.1 ~r - -

11.0 Yes Yes ~ouj

12.0 Yes Yes Yes

Sockets (Type 'APL')
 10.0 10.1 11.0 (32) 11.0 (64) 12.0 (32) 12.0 (64)

10.0 Yes ~o ~o - ~ou -

10.1 Yes Yes ~o - ~ou -

11.0 (32) Yes Yes Yes Yes ~ou ~ou

11.0 (64) Yes Yes Yes Yes ~ou ~ou

12.0 (32) Yes Yes Yes Yes Yes Yes

12.0 (64) Yes Yes Yes Yes Yes Yes

 Dyalog APL/W Version 12.0 Release Notes 12

Auxiliary Processes
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.

In other words, the AP must share the same word-width and byte-ordering as its

interpreter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and

saved.

 13

C H A P T E R 2

Unicode Support (Unicode Edition only)

Introduction

Benefits
Unicode is an industry standard allowing computers to consistently represent and

manipulate text expressed in any of the world's writing systems. It assigns a number, or

code point, to each of approximately 100,000 characters, including the APL character

set.

The adoption of Unicode provides users of Dyalog with two important benefits:

• It is now possible to write Dyalog applications that fully and properly support

not just American and Western European character sets, but all of the world’s

languages and writing systems. You can now write applications that input,

store, display and print characters in the entire Unicode set. This capability

also extends to the Dyalog Development Environment.

• Character data no longer needs to be translated as it enters or leaves Dyalog

during inter-operation with other components like database systems or code

libraries written in other languages.

Character Arrays
To support Unicode, the internal form of character arrays has changed

In all Versions of Dyalog APL prior to 12.0 (Unicode Edition), character arrays are

stored internally as indices into the Atomic Vector (�AV). This contains 256 different

characters, so internally, character arrays are represented by sequences of numbers in

the range 0-255. Each character consumes 1 byte (8 bits) of storage. The data type of a

simple character array, reported by �DR, is 82.

 Dyalog APL/W Version 12.0 Release Notes 14

In Version 12.0 Unicode Edition, character arrays are stored internally as Unicode code

points, which are integers that the Unicode consortium (currently) guarantees will

never consume more than 21 bits.

For arrays which only contain code points between 0 and 255 (more or less the ANSI

set), one byte is sufficient to contain the necessary code point for each character.

Characters contained in the first plane of Unicode, with code points up to 65,535

(hexadecimal FFFF), can be represented using two bytes per character. Unicode

characters beyond the first plane are stored using 4 bytes per character.

In order to conserve space, Version 12.0 Unicode Edition uses three character types, in

roughly the same way that Dyalog has three integer types (ignoring Booleans, which

can be described as 1-bit integers). The three character types have type numbers 80,

160 and 320. Type 82 is no longer used. The system will select the smallest type

required to represent the data in an array.

In the same way as for integers, the conversion between the three types is an internal

matter and for the most part invisible to the user. The only occasions on which you

need to be aware of the internal format is in considering space requirements for arrays,

and when using system functions which are sensitive to the internal form, like �DR and

functions for manipulating native files.

Arrays with data type 82 are not supported in a Unicode Edition workspace. Data

which has been stored by earlier Versions of Dyalog or by Classic Edition using

character type 82 are translated to type 80, 160 or 320 on entry into a Unicode Edition

workspace. In most cases, arrays containing APL characters will have type 160, other

arrays will have type 80.

 Chapter 2: Unicode Support 15

Keyboard Input

Introduction
All Versions of Dyalog APL prior to Version 12 employ a proprietary keyboard input

mechanism in which the mapping of keystrokes to characters is defined through the

Dyalog APL Input and Output Translate tables.

With the adoption of Unicode, it is no longer necessary for Dyalog to support a

proprietary mechanism for entering (and displaying) APL symbols. APL characters are

handled in the same way as all other Unicode characters, and like other Unicode

characters, may be entered using whatever standard tools are provided to cater for

unusual languages and special requirements.

Version 12.0 Unicode Edition no longer uses the Dyalog APL Input Translate Tables

but instead works directly off standard Operating System keyboards and (under

Windows) IMEs.

Version 12.0 Classic Edition, which does not support Unicode, continues to use the

same proprietary keyboard input mechanism as before and the Dyalog Development

Environment requires an Input Translate Table to specify the mechanism for entering

APL symbols.

MSKLC Keyboards for APL Characters
Under Windows, Microsoft provides a tool called the Microsoft Keyboard Layout

Creator (MSKLC)1. This is intended to allow users to create custom keyboards to cater

for requirements that are not covered by the standard sets of keyboards shipped with

the different international editions of Windows.

Using the MSKLC Version 1.4, Dyalog has created a set of keyboards which are

based upon standard National Language keyboards but which have the additional

functionality to support APL characters.

Using one of these keyboards, APL characters are entered using a special meta key in

combination with the normal character keys. Other keystrokes operate as normal.

There are two variants supplied; one in which APL symbols are entered using the Ctrl

key in combination with the normal character keys, and one in which the AltGr key is

used instead. The former is compatible with the keyboard layouts supported by

previous Versions of Dyalog APL and will be familiar to existing users. The latter,

which uses AltGr in place of Ctrl has the advantage that it does not override the

conventional use of keystrokes such as Ctrl-c (Cut).

1 http://www.microsoft.com/globaldev/tools/msklc.mspx

 Dyalog APL/W Version 12.0 Release Notes 16

The Dyalog APL IME
Since 2001, Dyalog APL for Windows has included an IME for entering APL symbols

This IME first appeared in Dyalog.Net and was intended to allow programmers to enter

APL symbols into non-APL applications (such as editors and word-processors) to

create APLScript files for ASP.NET and other .Net applications.

The Dyalog APL IME may be used with the Unicode Edition although it is effectively

replaced by the MSKLC keyboards and will become a deprecated feature.

Keyboard Shortcuts
The Dyalog Development Environment provides a number of shortcut keys that may

be used to perform actions. These are identified by 2-character codes; for example the

action to start the Tracer is identified by the code <TC>, and mapped to user-

configurable keystrokes.

In all Versions of Dyalog prior to Version 12.0 Unicode Edition and in the Classic

Edition, the mapping between keystrokes and actions is defined by the Input Translate

Table.

Windows keyboards and IMEs do not support application specific accelerator keys, so

for Version 12.0 Unicode Edition, this information is now specified separately using

the Keyboard Shortcuts dialog (Options/Configure/Keyboard Shortcuts) and stored in

the Windows Registry.

 Chapter 2: Unicode Support 17

Character Usage and Restrictions

Atomic Vector �AV�AV�AV�AV
The Unicode Edition continues to support the atomic vector �AV as a character array

with 256 elements. To the human eye, its appearance is unchanged, and expressions

which index �AV or search it to find the positions of characters, produce the same

results in the Unicode Edition as in the Classic Edition and in previous Versions of

Dyalog.

Underscores
The underscored APL alphabet GHIJKLMNOPQRSTUVWXYZ[\]^_` is not included

in the Unicode standard (presumably because underscore is seen as a display attribute

in the same category as strikethrough, bold or italic), although Unicode does include

delta-underscore, a. This poses a serious problem because existing Dyalog applications

include underscored characters in names (of APL objects) and in character arrays.

To resolve this problem, underscored characters are converted to corresponding

characters in the Unicode circled alphabet, which contains the letters from Ⓐ to Ⓐ.
Note that the APL 385 Unicode font, supplied with Dyalog displays the Unicode

symbols Ⓐ to Ⓐ using the glyphs G to `, thereby (somewhat artificially) allowing

application code and data to have the same visual appearance as before.

Dyalog strongly recommends that you move away from the use of the underscored

alphabet, as these symbols now constitute the sole remaining non-standard use of

characters in Dyalog applications.

Characters Allowed in User-Defined Names
In the Unicode character set, there are thousands of symbols which represent letters

and ideograms. In principle, it would be possible to allow the use of all of these letters

in user-defined names.

However, there are a number of interesting anomalies. For example, it might be

confusing to allow the use of Greek lower-case letters α ε ι ρ ω in user-defined names,

because they so closely resemble the APL symbols Α ! Ι Ρ Ω.

 Dyalog APL/W Version 12.0 Release Notes 18

In order to allow time for an orderly discussion and resolution of naming issues,

Version 12.0 Unicode Edition takes a conservative approach and only allows letters

which were already allowed in previous Versions of Dyalog APL, namely:

0123456789 (but not as the 1st character in a name)
ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopqrstuvwxyz
ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒ���ÖØÙÚÛÜÝß
àáâãäåæçèéêëìíîïðñòóôõöø©ª«¬þ
∆a
GHIJKLMNOPQRSTUVWXYZ[\]^_`

Note that using a standard Unicode font (rather than APL385 Unicode used in the table

above), the last row above would appear as the circled alphabet, Ⓐ to Ⓐ.

Workspace and Performance Considerations
In the Unicode Edition, character arrays (including constants embedded in functions),

which contain characters that are not in the first 256 Unicode code points, will

consume twice as much space as in previous Versions of Dyalog.

When a function is imported into the Unicode Edition from a Classic Edition

workspace, component file, or a workspace saved by a previous Version of Dyalog,,

comments in functions are converted to Unicode and the function is re-fixed. This has

implications for space and speed.

• Following conversion to unicode, the function may consume more space.

However, in Version 12.0 comments are stored as references to a table, where

identical comments are shared, so this may actually reduce the space

requirement.

• The operation to re-fix the function takes time, more if the function is very

large. It is therefore recommended that you do not dynamically import

functions from a Classic Edition workspace into the Unicode Edition (for

example, using �CY or by �FX'ing a �OR) in an application.

 Chapter 2: Unicode Support 19

Enhancements to �NA�NA�NA�NA
The system function �NA (Name Association) is used to load dynamically linked

libraries, and perform name association between entry points in the libraries and

function names in the workspace.

Version 12.0 contains a couple of enhancements aimed at making it easier to write

name associations that are portable between the Unicode and Classic Editions.

Default width of T arguments
In Version 12.0 Unicode Edition, an argument type of T (without a width specification)

is interpreted to mean a wide character according to the convention of the host

operating system. This translates to T2 under Windows and T4 under Unix or Linux.

Note therefore that the use of type T with default width (arguments coded as <0T, >0T

and =0T) is portable between Classic and Unicode Editions. This is because, in the

Classic Edition, T (with no width specifier) implies 1-byte characters, translated from

�AV to ASCII, while In the Unicode Edition, T (with no width specifier) implies 2-

byte characters.

If arguments or results need to be encoded in or decoded from UTF-8 or other formats,

it is the programmer's task to do this using dyadic �UCS.

Automatic Selection of A or W Functions
Under Windows, Win32 library calls are frequently available in two variants:

• An ANSI (narrow) version with a name ending in A

• a Unicode (wide) version with a name ending in W

For example, the function to create a Message Box is available as MessageBoxA and

MessageBoxW. In Version 12.0, you may specify the character * instead of A or W at

the end of a function name. This will be replaced by A in the Classic Edition and W in

the Unicode Edition. The default name of the associated function (if no left argument is

given to �NA), will be without the trailing letter (MessageBox).

For example, the following function will display a Message Box with OK & Cancel

buttons in both Editions (under Windows):

 ¯ ok�title MsgBox msg;MessageBox
[1] �NA'I user32³MessageBox* I <0T <0T I'
[2] ok�1=MessageBox 0 msg title 1 ? 1=OK, 2=Cancel.
 ¯

 Dyalog APL/W Version 12.0 Release Notes 20

Changes to �DR�DR�DR�DR
In the Unicode Edition, the data type for character arrays is 80, 160 or 320; and not 82.

However, �DR continues to recognise a left argument of 82 (when the right argument

contains numeric data) and returns the same characters as in previous Versions of

Dyalog, except that the results are converted (and translated) to one of the new

character types 80, 160 or 320. A left argument of 82 is not allowed if the right

argument contains Unicode character data.

Warning: Conversions of Unicode character data to numeric types will often give

different results in the Unicode Edition, as the internal representation of characters is

different.

Left arguments of 80, 160 and 320 can be used with �DR in both the Classic and

Unicode Editions. In the Classic Edition, a TRANSLATION ERROR (event number

92) will be signalled if the result would contain characters not in �AVU.

�AVU is a new system variable which is described overleaf.

Monadic �DR�DR�DR�DR on Character Arrays
Code which determines whether an array is a character array using expressions like

{82=�DR Ω}will not work in the Unicode Edition.

The following expression can be used in both Editions:

 ischar�{(10|�DR Ω)!0 2}

Dyadic �DR�DR�DR�DR on Character Arrays
Because the internal representation of character arrays has changed, the result of

dyadic �DR on character arrays has changed:

Classic Edition Unicode Edition

 �DR '	'
82
 83 �DR '	'
¯109
 163 �DR '	'
LENGTH ERROR

 �DR '	'
160
 83 �DR '	'
75 35
 163 �DR '	'
9035

 Chapter 2: Unicode Support 21

Unicode System Functions and Variables

Atomic Vector - Unicode �AVU�AVU�AVU�AVU
The Dyalog APL atomic vector �AV has always been, to some extent, user definable,

as the mapping between extended ASCII symbols (actually, the indices into an ASCII

font) and �AV positions was defined by the Output Translate Table. The appearance of

the characters in �AV also depended upon which font was used.

In Version 12.0 Unicode Edition, the contents of �AV are defined, not by the Output

Translate Table, but by a new system variable �AVU (Atomic Vector – Unicode) . Its

purpose is twofold:

1. To make it possible for each user to ensure that (each element of) �AV

contains the same character as before.

2. To guide the translation of character data read from old files and workspaces

to Unicode in such a way that the appearance or content of this data is

unchanged.

�AVU is an integer vector with 256 elements, containing the Unicode code points

corresponding to the symbols represented by �AV.

When the Unicode Edition imports character data from a Classic Edition workspace or

from a workspace saved by Version 11 or earlier, the conversion of data from type 82

is controlled by the value of �AVU. This also applies to character data stored in non-

Unicode component files or received on non-Unicode TCPSocket connections.

When you load or copy an old workspace into the Unicode Edition, you can control the

conversion of character data from that workspace by setting �AVU first.The default

value of �AVU corresponds to the use of the Dyalog Alt font with the default win.dot

Output Translate Table in the Classic Edition or in earlier versions of Dyalog APL.

Unicode Convert �UCS�UCS�UCS�UCS
�UCS converts (Unicode) characters into integers and vice versa.

Used monadically, it simply converts between Unicode characters and Unicode code

points. Used dyadically, the optional left argument converts a character string to or

from its UTF-8, UTF-16 or UTF-32 encoding schemes.

 Dyalog APL/W Version 12.0 Release Notes 22

Reading and Writing Unicode Native Files
Text files (native files) may be written in a variety of different formats. Notepad, for

example, allows you to save files in ANSI, Unicode, Unicode big endian, and UTF-82

encodings.

In ANSI format, each character is stored as a single byte. This format is only suitable

for storing ANSI characters (Unicode code point range 0-255) and corresponds directly

to Dyalog data type 80.

In Unicode format (UTF-16) a single 16-bitcode unit is used to encode the first 65,536

most commonly used characters, and a pair of 16-bit code units, called surrogates, to

encode the remaining less commonly used characters in Unicode.

In UTF-8 format, characters are represented by a mixture of single and multi-byte

characters. Some character codes in the range (128-256) are used as lead-bytes to mark the

start of multi-byte character codes. Using two or more bytes per character provides plenty

of room to represent all the commonly used world characters.

Under Windows, native files are identified as containing Unicode data by the file

signature which is a special prefix of 2 or 3 bytes at the beginning of the file. The

following Unicode formats are frequently encountered.

Description Signature

UTF-16 LE (Little Endian) First 2 bytes are

0xFF, 0xFE

(equivalent signed integers ¯1 ¯2)

UTF-8 First 3 bytes are

0xEF, 0xBB, 0xBF

(equivalent signed integers ¯17 ¯69 ¯65)

The following functions ReadFile and WriteFile may be used to read and write

files that are compatible with Notepad. Note that the functions do not support files in

UTF-32 or Unicode big endian formats nor 32-bit Unicode characters (data type 320).

2 UTF stands for Universal Character Set Transformation Format.

 Chapter 2: Unicode Support 23

 ¯ Chars�ReadFile name;nid;signature;nums
[1] ? Read ANSI or Unicode character file (Windows)
[2] nid�name �NTIE 0
[3] signature�3¸�NREAD nid 83 3 0
[4] :If signatureº¯17 ¯69 ¯65 ? UTF-8
[5] nums��NREAD nid 83(¯2+�NSIZE nid)3
[6] Chars�'UTF-8'�UCS{Ω+256×Ω<0}nums ? Signed ints
[7] :ElseIf (2¸signature)º¯1 ¯2 ? Unicode (UTF-16)
[8] Chars��NREAD nid 160(¯1+�NSIZE nid)2
[9] :Else ? ANSI
[10] Chars��NREAD nid 80(�NSIZE nid)0
[11] :EndIf
[12] �NUNTIE nid
 ¯

 ¯ {format}WriteFile(name chars);nid;signature;nums
[1] ? Write ANSI or Unicode character file (Windows)
[2] ? format = ANSI or UTF-8 or UTF-16
[3] �SIGNAL($¾/80 160=�DR chars)/11
[4] :If 0=�NC'format'
[5] format�(80 160Ι�DR chars)À'ANSI' 'UTF-16'
[6] :EndIf
[7] �SIGNAL($(Áformat)!'ANSI' 'UTF-8' 'UTF-16')/11
[8] :Trap 22
[9] nid�name �NCREATE 0
[10] :Else
[11] nid�name �NTIE 0
[12] name �NERASE nid
[13] nid�name �NCREATE 0
[14] :EndTrap
[15] :Select format
[16] :Case 'ANSI'
[17] chars �NAPPEND nid 80
[18] :Case 'UTF-8'
[19] ¯17 ¯69 ¯65 �NAPPEND nid 83
[20] nums��UCS'UTF-8'�UCS chars
[21] nums �NAPPEND nid 80
[22] :Else
[23] ¯1 ¯2 �NAPPEND nid 83
[24] chars �NAPPEND nid 160
[25] :EndSelect
[26] �NUNTIE nid
 ¯

 Dyalog APL/W Version 12.0 Release Notes 24

 25

C H A P T E R 3

Language Enhancements

New and Revised Primitive & System Functions

New System Functions & Variables

�AVU Atomic Vector - Unicode

�FCOPY Copy File

�FPROPS File Properties

�UCS Unicode Convert

Revised Primitive Functions, System Functions & Variables

� Grade Down

	 Grade Up

�G Underscored Alphabet

�AV Atomic Vector

�DR Data Representation

�FCREATE Create component file

�MAP Map File

�NA Name Association

�NAPPEND Native File Append

�NREAD Native File Read

�NREPLACE Native File Replace

�NXLATE Native File Translate

�TC Terminal Control

 Dyalog APL/W Version 12.0 Release Notes 26

Grade Down (Monadic): R��YR��YR��YR��Y
Y must be a simple character or simple numeric array of rank greater than 0. R is an

integer vector being the permutation of Ι1¸ΡY that places the sub-arrays of Y along

the first axis in descending order. The indices of any set of identical sub-arrays in Y

occur in R in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays

along the first axis are compared in ravel order with greatest weight being given to the

first element and least weight being given to the last element.

Example

 M
2 5 3 2
3 4 1 1
2 5 4 5
2 5 3 2
2 5 3 4

 �M
2 3 5 1 4

 M[�M;]
3 4 1 1
2 5 4 5
2 5 3 4
2 5 3 2
2 5 3 2

If Y is a character array, the implied collating sequence is the numerical order of the

corresponding Unicode code points (Unicode Edition) or the ordering of characters in

�AV (Classic Edition).

�IO is an implicit argument of Grade Down.

 Chapter 3: Language Enhancements 27

Note that character arrays sort differently in the Unicode and Classic Editions.

Example

 M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

 �M
2 3 1 4

 �M
3 1 4 2

 M[�M;]
porridge
Porridge
Goldilocks
3 bears

 M[�M;]
Porridge
Goldilocks
3 bears
porridge

 Dyalog APL/W Version 12.0 Release Notes 28

Grade Up (Monadic): R�	YR�	YR�	YR�	Y
Y must be a simple character or simple numeric array of rank greater than 0. R is an

integer vector being the permutation of Ι1¸ΡY that places the sub-arrays along the

first axis in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays

along the first axis are compared in ravel order with greatest weight being given to the

first element and least weight being given to the last element.

Examples

 	22.5 1 15 3 ¯4
5 2 4 3 1

 M
2 3 5
1 4 7

2 3 5
1 2 6

2 3 4
5 2 4

 	M
3 2 1

If Y is a character array, the implied collating sequence is the numerical order of the

corresponding Unicode code points (Unicode Edition) or the ordering of characters in

�AV (Classic Edition).

�IO is an implicit argument of Grade Up

 Chapter 3: Language Enhancements 29

Note that character arrays sort differently in the Unicode and Classic Editions.

 M
Goldilocks
porridge
Porridge
3 bears

Unicode Edition Classic Edition

 	M
4 1 3 2

 	M
2 4 1 3

 M[M;]
3 bears
Goldilocks
Porridge
porridge

 M[M;]
porridge
3 bears
Goldilocks
Porridge

 Dyalog APL/W Version 12.0 Release Notes 30

Underscored Alphabetic Characters: R��R��R��R��GGGG
ⒶG is a deprecated feature. Dyalog strongly recommends that you move away from

the use of ⒶG and of the underscored alphabet itself, as these symbols now constitute

the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, ⒶG was a simple character vector,

composed of the letters of the alphabet with underscores. If the Dyalog Alt font was in

use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier

 �G
GHIJKLMNOPQRSTUVWXYZ[\]^_`

For compatibility with previous versions of Dyalog APL, functions that contain

refences to �G will continue to return characters with the same index in �AV as before.

However, the display of �G is now �Á, and the old underscored symbols appear as they

did when the Dyalog Alt font was in use.

Current Version

 �Á
ÁÂÃÇÈÊËÌÍÎÏÐÒ���ÙÚÛÝþãìðòõ

 Chapter 3: Language Enhancements 31

Atomic Vector: R��AVR��AVR��AVR��AV
�AV is a deprecated feature and is replaced by �UCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL

character set (see Chapter 9).

In the Classic Edition the contents of �AV are defined by the Output Translate Table.

In the Unicode Edition, the contents of �AV are defined by the system variable �AVU.

Examples

 �AV[48+Ι10]
0123456789

 5 52Ρ12%�AV
%'ΑΩ_abcdefghijklmnopqrstuvwxyz��¯.Ä0123456789�Å¥$£¢
∆ABCDEFGHIJKLMNOPQRSTUVWXYZ��ý·ÌaÁÂÃÇÈÊËÌÍÎÏÐÒ���ÙÚÛ
Ýþãìðòõ{�}ÎÏ¨ÀÄÅÆÑÉÑÖØÜßàáâäåæçèéêëíîïñ[/Ò\Ô<Õ=Ö>Ø¾Ù
-+÷×?!Ρ$¸%ΙÜ*ÝÞ¯ß(ÁÀ"#àá|;,âã�	äåæçè!êëìíºîóôöø"#-&ò
óôõö÷øùúûüý@©ª«�¬�³¶:�¿���E?)] §�	
%'ΑΩ_abcdefghijk

 Dyalog APL/W Version 12.0 Release Notes 32

Atomic Vector - Unicode: �AVU�AVU�AVU�AVU
�AVU specifies the contents of the atomic vector, �AV, and is used to translate data

between Unicode and non-Unicode character formats when required, for example

when:

• Unicode Edition loads or copies a Classic Edition workspace or a workspace

saved by a Version prior to Version 12.0.

• Unicode Edition reads character data from a non-Unicode component file, or

receives data type 82 from a TCP socket.

• Unicode Edition writes data to a non-Unicode component file

• Unicode Edition reads or writes data from or to a Native File using conversion

code 82.

• Classic Edition loads or copies a Unicode Edition workspace

• Classic Edition reads character data from a Unicode component file, or

receives data type 80, 160, or 320 from a TCP socket.

• Classic Edition writes data to a Unicode component file.

�AVU is an integer vector with 256 elements, containing the Unicode code points

which define the characters in �AV.

Note:

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is

stored internally as an index into the atomic vector, �AV. When a character is

displayed or printed, the index in �AV is translated to a number in the range 0-255

which represents the index of the character in an Extended ASCII font. This mapping

is done by the Output Translate Table which is user-configurable. Note that although

ASCII fonts typically all contain the same symbols in the range 0-127, there are a

number of different Extended ASCII font layouts, including proprietary APL fonts,

which provide different symbols in positions 128-255. The actual symbol that appears

on the screen or on the printed page is therefore a function of the Output Translate

Table and the font in use. Classic Edition provides two different fonts (and thus two

different �AV layouts) for use with the Development Environment, named Dyalog Std

(with APL underscores) and Dyalog Alt (without APL underscores

The default value of �AVU corresponds to the use of the Dyalog Alt Output Translate

Table and font in the Classic Edition or in earlier versions of Dyalog APL.

 2 13Ρ�AVU[97+Ι26]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
 �UCS 2 13Ρ�AVU[97+Ι26]
ÁÂÃÇÈÊËÌÍÎÏÐÒ
���ÙÚÛÝþãìðòõ

 Chapter 3: Language Enhancements 33

�AVU has namespace scope and can be localised, in order to make it straightforward to

write access functions which receive or read data from systems with varying atomic

vectors. If you have been using Dyalog Alt for most things but have some older code

which uses underscores, you can bring this code together in the same workspace and

have it all look “as it should” by using the Alt and Std definitions for �AVU as you

copy each part of the code into the same Unicode Edition workspace.

)COPY avu.dws Std.�AVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

 2 13Ρ�AVU[97+Ι26]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408
9409 9410
9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421
9422 9423
 �UCS 2 13Ρ�AVU[97+Ι26]
GHIJKLMNOPQRS
TUVWXYZ[\]^_`

Rules for Conversion on Import

When the Unicode Edition imports APL objects from a non-Unicode source, function

comments and character data of type 82 are converted to Unicode. When the Classic

Edition imports APL objects from a Unicode source, this translation is performed in

reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a

workspace that contains its own value of �AVU) the value of #.�AVU (the value of

�AVU in the root) in the source workspace is used. Otherwise, such as when APL

objects are imported from a pre-Version 12 workspace, from a component file, or from

a TCP socket, the local value of �AVU in the target workspace is used.

Rules for Conversion on Export

When the Unicode Edition exports APL objects to a non-Unicode destination, such as a

non-Unicode Component File or non-Unicode TCPSocket Object, function comments

(in �ORs) and character data of type 82 are converted to �AV indices using the local

value of �AVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a

Unicode Component File or Unicode TCPSocket Object, function comments (in �ORs)

and character data of type 82 are converted to Unicode using the local value of �AVU.

In all cases, if a character to be translated is not defined in �AVU, a TRANSLATION

ERROR (event number 92) will be signalled.

 Dyalog APL/W Version 12.0 Release Notes 34

Data Representation (Monadic): R��DR YR��DR YR��DR YR��DR Y
Monadic �DR returns the type of its argument Y. The result R is an integer scalar

containing one of the following values. Note that the internal representation and data

types for character data differs between the Unicode and Classic Editions.

Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer

160 16 bits character

163 16 bits signed integer

320 32 bits character

323 32 bits signed integer

326 32 bits Pointer

645 64 bits Floating

Unicode Edition

Value Data Type

11 1 bit Boolean

82 8 bits character

83 8 bits signed integer

163 16 bits signed integer

323 32 bits signed integer

326 32 bits Pointer

645 64 bits Floating

Classic Edition

Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

 Chapter 3: Language Enhancements 35

Data Representation (Dyadic): R�X �DR YR�X �DR YR�X �DR YR�X �DR Y
Dyadic �DR converts the data type of its argument Y according to the type

specification X. See monadic �DR on the previous page for a list of data types.

Case 1:

X is a single integer value. The bits in the right argument are interpreted as elements of

an array of type X. The shape of the resulting new array will typically be changed along

the last axis. For example, a character array seen as Boolean will have 8 times as many

elements along the last axis.

Case 2:

X is a 2-element integer value. The bits in the right argument are interpreted as type

X[1]. The system then attempts to convert the elements of the resulting array to type

X[2] without loss of precision. The result R is a two element nested array comprised

of:

[1] The converted elements or a fill element (0 or blank) where the conversion

failed

[2] A Boolean array of the same shape indicating which elements were

successfully converted.

Case 3: Classic Edition Only

X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argument

are interpreted as elements of an array of type X[1]. The system then converts them to

the character representation of the corresponding 16 bit integers. This case is provided

primarily for compatibility with APL*PLUS. For new applications, the use of the

[conv] field with �NAPPEND and �NREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by

�NXLATE 0. By default this is the mapping defined by the current output translate

table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace

compaction. For example, numeric arrays and (in the Unicode Edition) character arrays

will if possible, be squeezed to occupy the least possible amount of memory. However,

the internal representation of the result R is guaranteed to remain unmodified until it is

re-assigned (or partially re-assigned) with the result of any function.

 Dyalog APL/W Version 12.0 Release Notes 36

File Copy: RRRR�X �FCOPY Y�X �FCOPY Y�X �FCOPY Y�X �FCOPY Y
Access Code: 4609

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie

number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

The result R is the size of the new file in bytes.

The new file will be a 64-bit file, but will otherwise be identical to the original file. In

particular, the file creation, modification and access times will be identical and all

component level information, including the user number and update time, will be the

same.

Example

 tn�'oldfile32'�FTIE 0
 'S' �FPROPS tn
32
 'newfile64' �FCOPY tn
407796
 tn�'newfile64'�FTIE 0
 'S' �FPROPS tn
64

If X specifies the name of an existing file, the operation fails with a FILE NAME
ERROR.

Note: This operation is atomic. If an error occurs during the copy operation (such as

disk full) or if a strong interrupt is issued, the copy will be aborted and the new file X

will not be created.

 Chapter 3: Language Enhancements 37

File Create: {R}�X �FCREATE Y{R}�X �FCREATE Y{R}�X �FCREATE Y{R}�X �FCREATE Y
Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie

number followed by an optional address size. .

The file tie number must not be the tie number associated with another tied file.

The address size is an integer and may be either 32 or 64. A value of 32 causes the

internal component addresses to be represented by 32-bit values which allow a

maximum file size of 4GB. A value of 64 (the default) causes the internal component

addresses to be represented by 64-bit values which allows file sizes up to operating

system limits.

Note:

• a 32-bit component file may not contain Unicode character data.

• a 64-bit component file may not be accessed by versions of Dyalog APL

prior to Version 10.1.0

X must be either

a) a simple character scalar or vector which specifies the name of the file to be

created. See User Guide for file naming conventions under UNIX and DOS.

b) a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.

ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of �FCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an

explicit result, the first (closest to zero) available tie number. This allows you to

simplify code. For example:

from:

 tie�1+Ý/0,�FNUMS ? With next available number,
 file �FCREATE tie ? ... create file.

to:

 tie�file �FCREATE 0 ? Create with first available..

 Dyalog APL/W Version 12.0 Release Notes 38

Examples

 '..\BUDGET\SALES' �FCREATE 2 ? Windows
 '../budget/SALES.85' �FCREATE 2 ? UNIX

 'COSTS' 200000 �FCREATE 4 ? max size 200000

 'LARGE' �FCREATE 5 64 ? 64-bit file
 'SMALL' �FCREATE 6 32 ? 32-bit file

File Properties: R�X �FPROPS YR�X �FPROPS YR�X �FPROPS YR�X �FPROPS Y
Access Code 1 or 8192

�FPROPS reports and sets the properties of a component file.

Y must be a simple integer scalar or vector containing the file tie number.

X must be a simple character scalar or vector containing one or more valid Identifiers

listed in the table below, or a vector of 2-element vectors, each of which contains an

Identifier and a (new) value for that property.

If the left argument is a simple character array, the result R contains the current values

for the properties identified by X. If the left argument is nested, the result R contains

the previous values for the properties identified by X

Identifier Property Description / Legal Values

S File Size

(read only)

32 = Small Component Files (<4Gb)

64 = Large Component Files

E Endian-ness

(read only)

0 = Little-endian

1 = Big-endian

U Unicode 0 = Characters must be written as type 82 arrays

1 = Characters must be written as Unicode arrays

J Journaling 0 = Disable Journaling

1 = Enable Journaling

The default properties for a newly created file are as follows:

• S = 64

• U = 1 (Unicode Edition and 64-bit file) or 0 (otherwise)

• J = 0.

• E depends upon the computer architecture.

 Chapter 3: Language Enhancements 39

Example

 tn�'myfile64' �FCREATE 0
 'SEUJ' �FPROPS tn
64 0 1 0

 tn�'myfile32' �FCREATE 0 32
 'SEUJ' �FPROPS tn
32 0 0 0

The following expression disables Unicode and switches Journaling on. The function

returns the previous settings:

 ('U' 0)('J' 1) �FPROPS tn
1 0

The Unicode property applies only to 64-bit component files. 32-bit component files

may not contain Unicode character data and the value of the Unicode property is

always 0. To convert a 32-bit component file to a 64-bit component file, use �FCOPY.

Properties may be read by a task with �FREAD permission (access code 1), and set by

a task with �FSTAC access (8192). To set the value of the Journaling property, the file

must be exclusively tied.

If Journaling or Unicode properties are set, the file cannot be tied by Versions prior to

Version 12.0.

 Dyalog APL/W Version 12.0 Release Notes 40

Map File: R�{X}�MAP YR�{X}�MAP YR�{X}�MAP YR�{X}�MAP Y
�MAP function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; APL and raw. An APL mapped file contains

the binary representation of a Dyalog APL array, including its header. A file of this

type must be created using the supplied utility function ∆MPUT. When you map an

APL file, the rank, shape and data type of the array is obtained from the information on

the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you

must specify the characteristics of the APL array to be associated with this data. In

particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left

argument to �MAP.

The right argument Y specifies the name of the file to be mapped and, optionally, the

access type and a start byte in the file. Y may be a simple character vector, or a 2 or 3-

element nested vector containing:

1. file name (character scalar/vector)

2. access code (character scalar/vector) : one of : 'R' , 'W', 'r' or 'w'

3. start byte offset (integer scalar/vector). Must be a multiple of 4 (default 0)

If X is specified, it defines the type and shape to be associated with raw data on file. X

must be an integer scalar or vector. The first item of X specifies the data type and must

be one of the following values:

Classic Edition 11, 82, 83, 163, 323 or 645

Unicode Edition 11, 80, 83, 160, 163, 320, 323 or 645

Following items determine the shape of the mapped array. A value of ¯1 on any (but

normally the first) axis in the shape is replaced by the system to mean: read as many

complete records from the file as possible. Only one axis may be specified in this way.

If no left argument is given, file is assumed to contain a simple APL array, complete

with header information (type, rank, shape, etc).

Mapped files may be updated by changing the associated array using indexed

assignment: var[a]�b.

Note that a raw mapped file may be updated only if its file offset is 0.

 Chapter 3: Language Enhancements 41

Examples

Map raw file as a read-only vector of doubles:

 vec�645 ¯1 �MAP'c:\myfile'

Map raw file as a 20-column read-write matrix of 1-byte integers:

 mat�83 ¯1 20 �MAP'c:\myfile' 'W'

Replace some items in mapped file:

 mat[2 3;4 5]�2 2ΡΙ4

Map bytes 100-180 in raw file as a 5×2 read-only matrix of doubles:

 dat�645 5 2 �MAP'c:\myfile' 'R' 100

Put simple 4-byte integer array on disk ready for mapping:

 (À83 323 �DR 2 3 4ΡΙ24)∆MPUT'c:\myvar'

Then, map a read-write variable:

 var��MAP'c:\myvar' 'w'

Note that a mapped array need not be named. In the following example, a ‘raw’ file is

mapped, summed and released, all in a single expression:

 +/163 ¯1 �MAP'c:\shorts.dat'
42

Compatibility between Editions

In the Unicode Edition �MAP will fail with a TRANSLATION ERROR (event number

92) if you attempt to map an APL file which contains character data type 82.

In order for the Unicode Edition to correctly interpret data in a raw file that was written

using data type 82, the file may be mapped with data type 83 and the characters

extracted by indexing into �AVU.

 Dyalog APL/W Version 12.0 Release Notes 42

Name Association: {R}�{X}�NA Y{R}�{X}�NA Y{R}�{X}�NA Y{R}�{X}�NA Y
�NA provides access from APL to compiled functions within a Dynamic Link

Library (DLL). A DLL is a collection of functions typically written in C (or C++)

each of which may take arguments and return a result.

Instructional examples using �NA can be found in supplied workspace: QUADNA.DWS.

The DLL may be part of the standard operating system software, purchased from a

third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the

function to be associated. The left argument X is a character vector that contains the

name to be associated with the external function. If the �NA is successful, a function

(name class 3) is established in the active workspace with name X. If X is omitted, the

name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function that

was fixed.

For example, math.dll might be a library of mathematical functions containing a

function divide. To associate the APL name div with this external function:

 'div' �NA 'F8 math|divide I4 I4'

where F8 and I4, specify the types of the result and arguments expected by divide.

The association has the effect of establishing a new function: div in the workspace,

which when called, passes its arguments to divide and returns the result.

)fns
div
 div 10 4
2.5

 Chapter 3: Language Enhancements 43

Type Declaration

In a compiled language such as C, the types of arguments and results of functions must

be declared explicitly. Typically, these types will be published with the documentation

that accompanies the DLL. For example, function divide might be declared:

double divide(long int, long int);

which means that it expects two long (4-byte) integer arguments and returns a double

(8-byte) floating point result. Notice the correspondence between the C declaration and

the right argument of �NA:

C: double divide (long int, long int);

APL: 'div' �NA 'F8 math|divide I4 I4 '

It is imperative that care be taken when coding type declarations. A DLL cannot check

types of data passed from APL. A wrong type declaration will lead to erroneous results

or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of �NA is:

[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed

as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.

Pathname: If the full pathname is omitted, APL looks for the DLL in ‘standard’

Windows directories. Specifically, APL uses the LoadLibrary system function to

locate the library, the exact workings of which can be found in the appropriate

Windows documentation for the Software Development Kit.

Alternatively, a full pathname may be supplied in the usual way:

 �NA'... c:\mydir\mydll|foo ...'

 Dyalog APL/W Version 12.0 Release Notes 44

Errors: If the specified DLL (or a dependent DLL) fails to load it will generate:

FILE ERROR 1 No such file or directory

If the DLL loads successfully, but the specified library function is not accessible, it will

generate:

VALUE ERROR

File Extension: If the file extension is omitted, .dll is assumed. Note that some DLLs

are in fact .exe files, and in this case the extension must be specified explicitly:

 �NA'... mydll.exe|foo ...'

Function Type: On a Windows computer, two distinct conventions, namely ‘C’ and

‘Pascal’ are in use for passing of arguments and receipt of results. If the type of the

function you are calling differs from the default, for your version of Dyalog APL (see

below) you must specify the function type explicitly immediately following the DLL

name. Combinations are

 .C32 32 bit, C calling convention (the default).

 .P32 32 bit, Pascal calling convention

Example

 �NA'... mydll.exe.P32|foo ...' ? 32 bit Pascal

Call by Ordinal Number

A DLL may associate an ordinal number with any of its functions. This number may

then be used to call the function as an alternative to calling it by name. Using �NA to

call by ordinal number uses the same syntax but with the function name replaced with

its ordinal number. For example:

 �NA'... mydll|57 ...'

Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be run

in its own system thread. For example:

 �NA'... mydll|foo& ...'

This means that other APL threads can run concurrently with the one that is calling the

�NA function.

 Chapter 3: Language Enhancements 45

Data Type Coding Scheme

The type coding scheme introduced above is of the form:

 [direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed below.

Description Symbol Meaning

< Pointer to array input to DLL function.

> Pointer to array output from DLL function

Direction

= Pointer to input/output array.

0 Null-terminated string. Special

Byte-counted string

I int

U unsigned int

C char

T Classic Edition char: translated to/from ANSI

Unicode Edition char
F float

Type

A APL array

1 1-byte

2 2-byte

4 4-byte

Width

8 8-byte

[n] Array of length n elements Array

[] Array, length determined at call-time

Structure {...} Structure.

In the Classic Edition, C specifies untranslated character, whereas T specifies that the

character data will be translated to/from �AV.

In the Unicode Edition, C and T are identical (no translation of character data is

performed) except that for C the default width is 1 and for T the default width is "wide"

(2 bytes under Windows).

The use of T with default width is recommended to ensure portability between

Editions.

 Dyalog APL/W Version 12.0 Release Notes 46

Direction

C functions accept data arguments either by value or by address. This distinction is

indicated by the presence of a ‘*’ character in the argument declaration:

 int num1; // value of num1 passed.

 int *num2; // Address of num2 passed.

An argument (or result) of an external function of type pointer, must be matched in the

�NA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an input

or an output variable. An output variable means that the C function overwrites values

at the supplied address. Because APL is a call-by-value language, and doesn’t have

pointer types, we accommodate this mechanism by distinguishing output variables, and

having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as

starting with one of the characters: <, > or =.

< indicates that the address of the argument will be used by C as an input variable and

values at the address will not be over-written.

> indicates that C will use the address as an output variable. In this case, APL must

allocate an output array over which C can write values. After the call, this array will

be included in the nested result of the call to the external function.

= indicates that C will use the address for both input and output. In this case, APL

duplicates the argument array into an output buffer whose address is passed to the

external function. As in the case of an output only array, the newly modified copy

will be included in the nested result of the call to the external function.

Examples

 <I2 Pointer to 2-byte integer - input to external function

 >C Pointer to character output from external function.

 =T Pointer to character input to and output from function.

 =A Pointer to APL array modified by function.

 Chapter 3: Language Enhancements 47

Special

In C it is common to represent character strings as null-terminated or byte counted

arrays. These special data types are indicated by inserting the symbol 0 (null-

terminated) or # (byte counted) between the direction indicator (<, >, =) and the type

(T or C) specification. For example, a pointer to a null-terminated input character

string is coded as <0T[], and an output one coded as >0T[].

Note that while appending the array specifier ‘[]’ is formally correct, because the

presence of the special qualifier (0 or #) implies an array, the ‘[]’ may be omitted:

<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types and widths. For

example, in the Classic Edition, <0U2 may be useful for dealing with Unicode.

 Dyalog APL/W Version 12.0 Release Notes 48

Type

The data type of the argument is represented by one of the symbols i, u, c, t, f, a,

which may be specified in lower or upper case:

 Type Description

I Integer The value is interpreted as a 2s complement signed integer.

U Unsigned

integer

The value is interpreted as an unsigned integer.

C Character The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code

point.

In the Classic Edition, the value is interpreted as an index into �AV.

This means that �AV positions map onto corresponding ANSI

positions.

For example, with �IO=0:

�AV[35] = 's', maps to ANSI[35] = ’

T Translated

character

The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code

point.

In the Classic Edition, the value is translated using standard Dyalog

�AV to ANSI translation. This means that �AV characters map onto

corresponding ANSI characters.

For example, with �IO=0:

�AV[35] = 's', maps to ANSI[115] = ’s’.

F Float The value is interpreted as an IEEE floating point number.

A APL array A pointer to the whole array (including header information) is

passed. This type is used to communicate with DLL functions which

have been written specifically to work with Dyalog APL. See the

User Guide section on Writing Auxiliary Processors. Note that type

A is always passed as a pointer, so is of the form <A, =A or >A.

 Chapter 3: Language Enhancements 49

Width

The type specifier may be followed by the width of the value in bytes. For example:

 I4 4-byte signed integer.

 U2 2-byte unsigned integer.

 F8 8-byte floating point number.

 F4 4-byte floating point number.

Type Possible values for Width Default value for Width

I 1, 2, 4, 8. 4 for 32-bit DLLs

8 for 64-bit DLLs

U 1, 2, 4, 8. 4 for 32-bit DLLs

8 for 32-bit DLLs

C 1,2,4 1

T 1,2,4 wide character(see below)

F 4, 8. 8

A Not applicable.

In the Unicode Edition, the default width is the width of a wide character according to

the convention of the host operating system. This translates to T2 under Windows and

T4 under Unix or Linux.

Examples

 I2 16-bit integer

 <I4 Pointer to input 4-byte integer

 U Default width unsigned integer.

 =F4 Pointer to input/output 4-byte floating point number.

 Dyalog APL/W Version 12.0 Release Notes 50

Arrays

Arrays are specified by following the basic data type with [n] or [], where n

indicates the number of elements in the array. In the C declaration, the number of

elements in an array may be specified explicitly at compile time, or determined

dynamically at runtime. In the latter case, the size of the array is often passed along

with the array, in a separate argument. In this case, n, the number of elements is

omitted from the specification. Note that C deals only in scalars and rank 1 (vector)

arrays.

int vec[10]; // explicit vector length.

unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.

U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C and

�NA. In C, an argument declaration may be given to receive a pointer to either a single

scalar item, or to the first element of an array. This is because in C, the address of an

array is deemed to be the address of its first element.

void foo (char *string);

char ch = 'a', ptr = "abc";

foo(&ch); // call with address of scalar.

foo(ptr); // call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is

to be called with the address of (pointer to) a scalar, it must be declared: '<T'.

Otherwise, to be called with the address of an array, it must be declared: '<T[]'.

Note that it is perfectly acceptable in such circumstances to define more than one name

association to the same DLL function specifying different argument types:

 'FooScalar'�NA'mydll|foo <T' � FooScalar'a'
 'FooVector'�NA'mydll|foo <T[]' � FooVector'abc'

 Chapter 3: Language Enhancements 51

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the

symbols {}. For example, the code {F8 I2} indicates a structure comprised of an 8-

byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3] means an

input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct

{

 double f;

 short i;

 } mystruct;

A function defined to receive a count followed by an input pointer to an array of such

structures:

void foo(unsigned count, mystruct *str);

An appropriate �NA declaration would be:

 �NA'mydll.foo U <{F8 I2}[]'

A call on the function with two arguments - a count followed by a vector of structures:

 foo 4,Á(1.4 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an 8-

byte float and a 2-byte int, respectively.

 Dyalog APL/W Version 12.0 Release Notes 52

Specifying Pointers Explicitly

�NA syntax enables APL to pass arguments to DLL functions by value or address as

appropriate. For example if a function requires an integer followed by a pointer to an

integer:

void fun(int valu, int *addr);

You might declare and call it:

 �NA'mydll|fun I <I' � fun 42 42

The interpreter passes the value of the first argument and the address of the second

one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first is

if the DLL function requires a null pointer, and the second is where you want to pass

on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as I4. This causes APL to pass

the pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL

function), you must code a separate �NA definition.

 'fun_null'�NA'mydll|fun I I4' � fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),

rather than its address.

 Chapter 3: Language Enhancements 53

Using a Function

A DLL function may or may not return a result, and may take zero or more arguments.

This syntax is reflected in the coding of the right argument of �NA. Notice that the

corresponding associated APL function is niladic or monadic (never dyadic), and that it

always returns a vector result - a null one if there is no output from the function. See

Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:

�NA 'mydll|fn1' ? Niladic
�NA 'mydll|fn2 <0T' ? Monadic - 1-element arg
�NA 'mydll|fn3 =0T <0T' ? Monadic - 2-element arg

DLL function Result-returning:

�NA 'I4 mydll|fn4' ? Niladic
�NA 'I4 mydll|fn5 F8' ? Monadic - 1-element arg
�NA 'I4 mydll|fn6 >I4[] <0T'? Monadic - 2-element arg

When the external function is called, the number of elements in the argument must

match the number defined in the �NA definition. Using the example functions defined

above:

 fn1 ? Niladic Function.
 fn2 Á'Single String' ? 1-element arg
 fn3 'This' 'That' ? 2-element arg

Note in the second example, that you must enclose the argument string to produce a

single item (nested) array in order to match the declaration. Dyalog converts the type

of a numeric argument if necessary, so for example in fn5 defined above, a Boolean

value would be converted to double floating point (F8) prior to being passed to the

DLL function.

 Dyalog APL/W Version 12.0 Release Notes 54

Pointer Arguments

When passing pointer arguments there are three cases to consider.

< Input pointer: In this case you must supply the data array itself as argument to the

function. A pointer to its first element is then passed to the DLL function.

 fn2 Á'hello'

> Output pointer: Here, you must supply the number of elements that the output

will need in order for APL to allocate memory to accommodate the resulting array.

 fn6 10 'world' ? 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually

used, the DLL function would write beyond the end of the reserved array and may

cause the interpreter to crash with a System Error.

= Input/Output: As with the input-only case, a pointer to the first element of the

argument is passed to the DLL function. The DLL function then overwrites some or

all of the elements of the array, and the new value is passed back as part of the

result of the call. As with the output pointer case, if the input array were too short,

so that the DLL wrote beyond the end of the array, the interpreter would almost

certainly crash.

 fn3 '.....' 'hello'

 Chapter 3: Language Enhancements 55

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a

DLL function must be returned as part of the explicit result, and this includes output

via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first

item of the result is the defined explicit result of the external function, and subsequent

items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an

explicit result) + the number of output or input/output arguments.

 �NA �NA �NA �NA Declaration Result Output

Arguments

Result

Length

 mydll|fn1 0 0

 mydll|fn2 <0T 0 0 0

 mydll|fn3 =0T <0T 0 1 0 1

I4 mydll|fn4 1 1

I4 mydll|fn5 F8 1 0 1

I4 mydll|fn6 >I4[] <0T 1 1 0 2

As a convenience, if the result would otherwise be a 1-item vector, it is

disclosed. Using the third example above:

 Ρfn3 '.....' 'abc'
5

fn3 has no explicit result; its first argument is input/output pointer; and its second

argument is input pointer. Therefore as the length of the result would be 1, it has been

disclosed.

 Dyalog APL/W Version 12.0 Release Notes 56

ANSI /Unicode Versions of Library Calls

Under Windows, most library functions that take character arguments, or return

character results have two forms: one Unicode (Wide) and one ANSI. For example, a

function such as MessageBox(), has two forms MessageBoxA() and

MessageBoxW(). The A stands for ANSI (1-byte) characters, and the W for wide (2-

byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for

the Dyalog Edition you are using, i.e. MessageBoxA() for the Classic Edition, but

MessageBoxW() for the Unicode Edition.

To simplify writing portable code for both Editions, you may specify the character *

instead of A or W at the end of a function name. This will be replaced by A in the

Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to �NA), will

be without the trailing letter (MessageBox).

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and complex

data types using its #define and typedef mechanisms. Using such abstractions

enables the C programmer to write code that will be portable across many operating

systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will normally

refer to the type of function arguments using defined names such as HANDLE or

LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list all the Microsoft definitions and their C

primitive equivalents, and indeed, DLLs from sources other than Microsoft may well

employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order to

convert typedefs to primitive C types and thence to �NA declarations. The

documentation may well refer you to the ‘include’ files which are part of the Software

Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their �NA

equivalents might prove useful.

 Chapter 3: Language Enhancements 57

Windows typedef �NA�NA�NA�NA equivalent

HWND I

HANDLE I

GLOBALHANDLE I

LOCALHANDLE I

DWORD U4

WORD U2

BYTE U1

LPSTR =0T[] (note 1)

LPCSTR <0T[] (note 2)

WPARAM U

LPARAM U4

LRESULT I4

BOOL I

UINT U

ULONG U4

ATOM U2

HDC I

HBITMAP I

HBRUSH I

HFONT I

HICON I

HMENU I

HPALETTE I

HMETAFILE I

HMODULE I

HINSTANCE I

COLORREF {U1[4]}

POINT {I I}

POINTS {I2 I2}

RECT {I I I I}

CHAR T or C

 Dyalog APL/W Version 12.0 Release Notes 58

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not indicate

whether this is input or output, so the safest coding would be =0T[] (providing the

vector you supply for input is long enough to accommodate the result). You may be

able to improve simplicity or performance if the documentation indicates that the

pointer is ‘input only’ (<0T[]) or ‘output only’ (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore coding

<0T[] is safe.

3. Note that the use of type T with default width ensures portability of code between

Classic and Unicode Editions. In the Classic Edition, T (with no width specifier)

implies 1-byte characters which are translated between �AV and ASCII, while In

the Unicode Edition, T (with no width specifier) implies 2-byte (Unicode)

characters.

Dyalog32.dll

Included with Dyalog APL is a utility DLL which is called dyalog32.dll.

The DLL contains two functions: MEMCPY and STRNCPY.

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between

memory buffers.

Its C definition is:

void MEMCPY(// copy memory

void *to, // target address

void *fm, // source address

unsigned size // number of bytes to copy

);

MEMCPY copies size bytes starting from source address fm, to destination address

to. If the source and destination areas overlap, the result is undefined.

MEMCPY’s versatility stems from being able to associate to it using many different type

declarations.

 Chapter 3: Language Enhancements 59

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point

numbers. To copy these to an APL array, we could define the association:

 'doubles' �NA 'dyalog32|MEMCPY >F8[] I4 U4'
 doubles numb addr (numb×8)

Notice that:

As the first argument to doubles is an output argument, we must supply the number

of elements to reserve for the output data.

MEMCPY is defined to take the number of bytes to copy, so we must multiply the

number of elements by the element size in bytes.

Example

Suppose that a database application requires that we construct a record in global

memory prior to writing it to file. The record structure might look like this:

typedef struct {

int empno; // employee number.

 float salary; // salary.

 char name[20]; // name.

 } person;

Then, having previously allocated memory (addr) to receive the record, we can

define:

 'prec' �NA 'dyalog32|MEMCPY I4 <{I4 F4 T[20]} U4'
 prec addr(99 12345.60 'Charlie Brown
')(4+4+20)

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void STRNCPY(// copy null-terminated string

char *to, // target address

char *fm, // source address

unsigned size // MAX number of chars to copy

);

STRNCPY copies a maximum of size characters from the null-terminated source

string at address fm, to the destination address to. If the source and destination strings

overlap, the result is undefined.

 Dyalog APL/W Version 12.0 Release Notes 60

If the source string is shorter than size, null characters are appended to the

destination string.

If the source string (including its terminating null) is longer than size, only size

characters are copied and the resulting destination string is not null-terminated

Example

Suppose that a database application returns a pointer (addr) to a structure that

contains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:

 char *first; // first name (max 19 chars + 1 null).

 char *last; // last name. (max 19 chars + 1 null).

} name;

To copy the names from the structure:

 'get'�NA'dyalog32|STRNCPY >0T[] I4 U4'
 get 20 addr 20
Charlie
 get 20 (addr+4) 20
Brown

To copy data from the workspace into an already allocated (new) structure:

 'put'�NA'dyalog32|STRNCPY I4 <0T[] U4'
 put new 'Bo' 20
 put (new+4) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters

are passed to put. More than 19 characters would not leave STRNCPY enough space

to include the trailing null, which would probably cause the application to fail.

 Chapter 3: Language Enhancements 61

Examples

The following examples all use functions from the Microsoft Windows USER32.DLL.

This DLL should be located in a standard Windows directory, so you should not

normally need to give the full path name of the library. However if trying these

examples results in the error message ‘FILE ERROR 1 No such file or directory’, you

must locate the DLL and supply the full path name (and possibly extension).

Example 1

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It

takes no arguments and returns an unsigned int and is declared as follows:

UINT GetCaretBlinkTime(void);

The following statements would provide access to this routine through an APL

function of the same name.

 �NA 'U User32|GetCaretBlinkTime'
 GetCaretBlinkTime
530

 �NA 'U User32|GetCaretBlinkTime'

The following statement would achieve the same thing, but using an APL function

called BLINK.

 'BLINK' �NA 'U User32|GetCaretBlinkTime'
 BLINK
530

Example 2

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a

single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime(UINT);

The following statements would provide access to this routine through an APL

function of the same name :

 �NA 'User32|SetCaretBlinkTime U'
 SetCaretBlinkTime 1000

 Dyalog APL/W Version 12.0 Release Notes 62

Example 3

The Windows function "MessageBox" displays a standard dialog box on the screen

and awaits a response from the user. It takes 4 arguments. The first is the window

handle for the window that owns the message box. This is declared as an unsigned int.

The second and third arguments are both pointers to null-terminated strings containing

the message to be displayed in the Message Box and the caption to be used in the

window title bar. The 4th argument is an unsigned int that specifies the Message Box

type. The result is an int which indicates which of the buttons in the message box the

user has pressed. The function is declared as follows:

int MessageBox(HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of the

same name. Note that the 2nd and 3rd arguments are both coded as input pointers to

type T null-terminated character arrays which ensures portability between Editions.

 �NA 'I User32|MessageBox* U <0T <0T U'

The following statement displays a Message Box with a stop sign icon together with 2

push buttons labelled OK and Cancel (this is specified by the value 19).

 MessageBox 0 'Message' 'Title' 19

The function works equally well in the Unicode Edition because the <0T specification
is portable.

 MessageBox 0 '�� �����' '� ������' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to use

Dyalog APL’s primitive MsgBox object.

Example 4

The Windows function "FindWindow" obtains the window handle of a window

which has a given character string in its title bar. The function takes two arguments.

The first is a pointer to a null-terminated character string that specifies the window's

class name. However, if you are not interested in the class name, this argument should

be a NULL pointer. The second is a pointer to a character string that specifies the title

that identifies the window in question. This is an example of a case described above

where two instances of the function must be defined to cater for the two different types

of argument. However, in practice this function is most often used without specifying

the class name. The function is declared as follows:

HWND FindWindow(LPCSTR, LPCSTR);

 Chapter 3: Language Enhancements 63

The following statement associates the APL function FW with the second variant of the

FindWindow call, where the class name is specified as a NULL pointer. To indicate

that APL is to pass the value of the NULL pointer, rather than its address, we need to

code this argument as I4.

 'FW' �NA 'U User32|FindWindow* I4 <0T'

To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":

 ��HNDL�FW 0 'CLEAR WS - Dyalog APL/W'
59245156

Example 5

The Windows function "GetWindowText" retrieves the caption displayed in a

window's title bar. It takes 3 arguments. The first is an unsigned int containing the

window handle. The second is a pointer to a buffer to receive the caption as a null-

terminated character string. This is an example of an output array. The third argument

is an int which specifies the maximum number of characters to be copied into the

output buffer. The function returns an int containing the actual number of characters

copied into the buffer and is declared as follows:

int GetWindowText(HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL function

of the same name. Note that the second argument is coded as ">0T" indicating that it

is a pointer to a character output array.

 �NA 'I User32|GetWindowText* U >0T I'

Now change the Session caption using)WSID :

)WSID MYWS
was CLEAR WS

Then retrieve the new caption (max length 255) using window handle HNDL from the

previous example:

 DISPLAY GetWindowText HNDL 255 255
.E-------------------------.
| .E------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'!-------------------------'

 Dyalog APL/W Version 12.0 Release Notes 64

There are three points to note. Firstly, the number 255 is supplied as the second

argument. This instructs APL to allocate a buffer large enough for a 255-element

character vector into which the DLL routine will write. Secondly, the result of the

APL function is a nested vector of 2 elements. The first element is the result of the

DLL function. The second element is the output character array.

Finally, notice that although we reserved space for 255 elements, the result reflects the

length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument as

an input/output array.

e.g.

 �NA 'I User32|GetWindowText* U =0T I'

 DISPLAY GetWindowText HNDL (255Ρ' ') 255
.E-------------------------.
| .E------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'!-------------------------'

In this case, the second argument is coded as =0T, so when the function is called an

array of the appropriate size must be supplied. This method uses more space in the

workspace, although for small arrays (as in this case) the real impact of doing so is

negligible.

Example 6

The function "GetCharWidth" returns the width of each character in a given range

Its first argument is a device context (handle). Its second and third arguments specify

font positions (start and end). The third argument is the resulting integer vector that

contains the character widths (this is an example of an output array). The function

returns a Boolean value to indicate success or failure. The function is defined as

follows. Note that this function is provided in the library: GDI32.DLL.

BOOL GetCharWidth(HDC, UINT, UINT, int FAR*);

 Chapter 3: Language Enhancements 65

The following statements provide access to this routine through an APL function of the

same name :

 �NA 'U4 GDI32|GetCharWidth* I U U >I[]'

 'P'�WC'Printer'

 DISPLAY GetCharWidth ('P' �WG 'Handle') 65 67 3
.E-------------.
| .E-------. |
| 1 |50 50 50| |
| '$-------' |
'!-------------'

Note: 'P'�WG'Handle' returns a 32-bit handle which, if the top bit is set, will

appear in APL as a negative integer. Attempting to supply such a negative number as

an argument to a DLL function when the argument is declared unsigned will result in a

DOMAIN ERROR. Window handles should therefore be declared as I rather than U.

Example 7

The following example from the supplied workspace: QUADNA.DWS illustrates several

techniques which are important in advanced �NA programming. Function

DllVersion returns the major and minor version number for a given DLL.

In advanced DLL programming, it is often necessary to administer memory outside

APL’s workspace. In general, the procedure for such use is:

1. Allocate global memory.

2. Lock the memory.

3. Copy any DLL input information from workspace into memory.

4. Call the DLL function.

5. Copy any DLL output information from memory to workspace.

6. Unlock the memory.

7. Free the memory.

Notice that steps 1 and 7, and steps 2 and 6 complement each other. That is, if you

allocate global system memory, you must free it after you have finished using it. If you

continue to use global memory without freeing it, your system will gradually run out of

resources. Similarly, if you lock memory (which you must do before using it), then you

should unlock it before freeing it. Although on some versions of Windows, freeing the

memory will include unlocking it, in the interests of good style, maintaining the

symmetry is probably a good thing.

 Dyalog APL/W Version 12.0 Release Notes 66

 ¯ version�DllVersion file;Alloc;Free;Lock;Unlock;Size
 ;Info;Value;Copy;size;hndl;addr;buff;ok
[1]
[2] 'Alloc'�NA'U4 kernel32|GlobalAlloc U4 U4'
[3] 'Free'�NA'U4 kernel32|GlobalFree U4'
[4] 'Lock'�NA'U4 kernel32|GlobalLock U4'
[5] 'Unlock'�NA'U4 kernel32|GlobalUnlock U4'
[6]
[7] 'Size'�NA'U4 version|GetFileVersionInfoSize* <0T >U4'
[8] 'Info'�NA'U4 version|GetFileVersionInfo*<0T U4 U4 U4'
[9] 'Value'�NA'U4 version|VerQueryValue* U4 <0T >U4 >U4'
[10]
[11] 'Copy'�NA'dyalog32|MEMCPY >U4[] U4 U4'
[12]
[13] :If ×size�ÀSize file 0 ? Size of info
[14] :AndIf ×hndl�Alloc 0 size ? Alloc memory
[15] :If ×addr�Lock hndl ? Lock memory
[16] :If ×Info file 0 size addr ? Version info
[17] ok buff size�Value addr'\' 0 0 ? Version value
[18] :If ok
[19] buff�Copy(size÷4)buff size ? Copy info
[20] version�(2/2*16)áÀ2%buff ? Split version
[21] :EndIf
[22] :EndIf
[23] ok�Unlock hndl ? Unlock memory
[24] :EndIf
[25] ok�Free hndl ? Free memory
[26] :EndIf
 ¯

Lines [2-11] associate APL function names with the DLL functions that will be used.

Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information from a DLL.

Line[11] associates Copy with MEMCPY function from dyalog32.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the

DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,

in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise, the

calling environment will sustain a VALUE ERROR.

 Chapter 3: Language Enhancements 67

More Examples

�NA'U4 ADVAPI32 |RegCloseKey U4'
�NA'I ADVAPI32 |RegCreateKeyEx* U <0T I <0T I I I >U >U'
�NA'U ADVAPI32 |RegEnumValue* U U >0T =U U >U >0T =U'
�NA'I ADVAPI32 |RegOpenKey* U <0T >U'
�NA'U4 ADVAPI32 |RegOpenKeyEx* U4 <0T U4 U4 =U4'
�NA'I ADVAPI32 |RegQueryValueEx* U <0T U4 >U4 >0T =I4'
�NA'I4 ADVAPI32 |RegSetValueEx* U <0T U4 U4 <0T U4'
�NA'I DOS_U32 |Copy <0T <0T'
�NA'U DOS_U32 |Dir <0T U >0T'
�NA'U DOS_U32 |DirMore U >0T'
�NA' DOS_U32 |DirClose'
�NA'I DOS_U32 |Rename <0T <0T'
�NA'I DOS_U32 |Erase <0T'
�NA' dyalog32 |STRNCPY >0T I4 U4'
�NA' dyalog32 |MEMCPY >{U1[4]}[16] I4 U4'
�NA'I gdi32 |AddFontResource* <0T'
�NA' GDI32 |BitBlt U U U U U U U U U'
�NA'U4 gdi32 |GetPixel U4 U4 U4'
�NA'U4 GDI32 |GetStockObject U4'
�NA'I gdi32 |RemoveFontResource* <0T'
�NA'U4 gdi32 |SetPixel U4 U4 U4 U4'
�NA'U4 GLU32 |gluPerspective F8 F8 F8 F8'
�NA'I kernel32 |_lclose U'
�NA'I kernel32 |_lcreat <0T I'
�NA'U4 kernel32 |_llseek I U4 I'
�NA'I kernel32 |_lopen <0T I'
�NA'U kernel32 |_lread U >U1[] U'
�NA'U kernel32 |_lwrite U <U1[] U'
�NA'I kernel32 |CopyFileA <0T <0T I'
�NA'I4 kernel32 |GetEnvironmentStrings'
�NA'I4 kernel32 |GetLastError'
�NA'I kernel32 |GetPrivateProfileInt* <0T <0T I <0T'
�NA'I kernel32 |GetProfileString* <0T <0T <0T >0T I'
�NA'U2 kernel32 |GetSystemDirectory* >0T U2'
�NA'I2 KERNEL32 |GetTempPathA U4 >0T'
�NA'U KERNEL32 |GetWindowsDirectory* >0T U'
�NA'U kernel32 |GlobalAlloc U U4'
�NA'U kernel32 |GlobalFree U'
�NA' Kernel32 |GlobalMemoryStatus ={U4 U4 U4 U4 U4 U4 U4 U4}'
�NA'U KERNEL32 |WritePrivateProfileString* <0T <0T <0T <0T'
�NA'U4 OpenGL32 |glClearColor F4 F4 F4 F4'
�NA'U4 OpenGL32 |glClearDepth F4'
�NA'U4 OpenGL32 |glEnable U4'
�NA'U4 OpenGL32 |glMatrixMode U4'
�NA'U4 USER32 |ClientToScreen U =U4[2]'
�NA'I user32 |FindWindow* I4 <0T'
�NA' user32 |ShowWindow I I'
�NA'I2 USER32 |GetAsyncKeyState I'
�NA'U4 user32 |GetDC U4'
�NA'I4 User32 |GetDialogBaseUnits'
�NA'I user32 |GetFocus'
�NA'U4 user32 |GetSysColor I'
�NA'I user32 |GetSystemMetrics I'
�NA' USER32 |InvalidateRgn I4 U4 U4'
�NA'I user32 |MessageBox* I <0T <0T I'
�NA'U4 user32 |ReleaseDC U4 U4'
�NA'U4 USER32 |SendMessage* I4 U4 U4 <I[]'
�NA'I2 user32 |SetFocus I'
�NA'I user32 |WinHelp* I <0T I I4'
�NA'U WINMM |sndPlaySound* <0T U'

 Dyalog APL/W Version 12.0 Release Notes 68

Native File Append: {R}�X �NAPPEND Y{R}�X �NAPPEND Y{R}�X �NAPPEND Y{R}�X �NAPPEND Y
This function appends the ravel of its left argument X to the end of the designated

native file. X must be a simple homogeneous APL array. Y is a 1- or 2-element integer

vector. Y[1] is a negative integer that specifies the tie number of a native file. The

optional second element Y[2] specifies the data type to which the array X is to be

converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the record,

which is also the start of the following one.

Unicode Edition

Unless you specify the data type in Y[2], a character array will by default be written

using type 80.

If the data will not fit into the specified character width (bytes) �NAPPEND will fail

with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or 320)

in order to write Unicode characters whose code-point are in the range 256-65535 and

>65535 respectively.

Example

 n�'test'�NCREATE 0

 'abc' �nappend n

 '�������'�nappend n
DOMAIN ERROR
 '�������'�NAPPEND n
 Ù

 '�������'�NAPPEND n 160

 �NREAD n 80 3 0
abc
 �NREAD n 160 7
�������

For compatibility with old files, you may specify that the data be converted to type 82

on output. The conversion (to �AV indices) will be determined by the local value of

�AVU.

 Chapter 3: Language Enhancements 69

Native File Read: R��NREAD YR��NREAD YR��NREAD YR��NREAD Y
This monadic function reads data from a native file. Y is a 3- or 4-element integer

vector whose elements are as follows:

[1] negative tie number,

[2] conversion code (see below),

[3] count,

[4] start byte, counting from 0.

Y[2] specifies conversion to an APL internal form as follows. Note that the internal

formats for character arrays differ between the Unicode and Classic Editions.

Value Number of bytes read Result Type Result shape

11 count 1 bit Boolean 8 × count
80 countcountcountcount 8 bits character countcountcountcount
823 count 8 bits character count
83 countcountcountcount 8 bits integer countcountcountcount
160 2 × count2 × count2 × count2 × count 16-bits character countcountcountcount
163 2 × count2 × count2 × count2 × count 16 bits integer countcountcountcount
320 4 × 4 × 4 × 4 × countcountcountcount 32-bits character countcountcountcount
323 4 × count 32 bits integer count
645 8 × count 64bits floating count

Unicode Edition : Conversion Codes

Value Number of bytes read Result Type Result shape

11 count 1 bit Boolean 8 × count
82 count 8 bits character count
83 countcountcountcount 8 bits integer countcountcountcount
163 2 × count2 × count2 × count2 × count 16 bits integer countcountcountcount
323 4 × count 32 bits integer count
645 8 × count 64bits floating count

Classic Edition : Conversion Codes

Note that types 80, 160 and 320 and 83 and 163 are exclusive to Dyalog APL.

3 Conversion code 82 is permitted in the Unicode Edition for compatibility and causes 1-byte
data on file to be translated (according to �NXLATE) from �AV indices into normal (Unicode)
characters of type 80, 160 or 320.

 Dyalog APL/W Version 12.0 Release Notes 70

Example

 DATA��NREAD ¯1 160 (0.5×�NSIZE ¯1) 0 ? Unicode
 DATA��NREAD ¯1 82 (�NSIZE ¯1) 0 ? Classic

Native File Replace: {R}�X �NREPLACE Y{R}�X �NREPLACE Y{R}�X �NREPLACE Y{R}�X �NREPLACE Y
�NREPLACE is used to write data to a native file, replacing data which is already

there.

X must be a simple homogeneous APL array containing the data to be written.

Y is a 2- or 3-element integer vector whose elements are as follows:

 [1] negative tie number,

 [2] start byte, counting from 0, at which the data is to be written,

 [3] conversion code (optional).

See �NREAD for a list of valid conversion codes.

The shy result is the position within the file of the end of the record, or, equivalently,

the start of the following one. Used, for example, in:

 ? Replace sequentially from indx.
 {Α �NREPLACE tie Ω}/vec,indx

Unicode Edition

Unless you specify the data type in Y[2], a character array will by default be written

using type 80. .

If the data will not fit into the specified character width (bytes) �NREPLACE will fail

with a DOMAIN ERROR.

As a consequence of these two rules, you must specify the data type (either 160 or 320)

in order to write Unicode characters whose code-point are in the range 256-65535 and

>65535 respectively.

 Chapter 3: Language Enhancements 71

Example

 n�'test'�NTIE 0 ? See �NAPPEND example

 �NREAD n 80 3 0
abc
 �NREAD n 160 7
�������

 ��'����������'�NREPLACE n 3
DOMAIN ERROR
 ��'����������'�NREPLACE n 3
 Ù

 ��'����������'�NREPLACE n 3 160
23
 �NREAD n 80 3 0
abc
 �NREAD n 160 10
����������

For compatibility with old files, you may specify that the data be converted to type 82

on output. The conversion (to �AV indices) will be determined by the local value of

�AVU.

 Dyalog APL/W Version 12.0 Release Notes 72

Native File Translate: {R}�{X}�NXLATE Y{R}�{X}�NXLATE Y{R}�{X}�NXLATE Y{R}�{X}�NXLATE Y
This associates a character translation vector with a native file or, if Y is 0, with the use

by �DR.

A translate vector is a 256-element vector of integers from 0-255. Each element maps

the corresponding �AV position onto an ANSI character code.

For example, to map �AV[17+�IO] onto ANSI 'a' (code 97), element 17 of the

translate vector is set to 97.

�NXLATE is a non-Unicode (Classic Editon) feature and is retained in the Unicode

Edition, only for compatibility.

Y is either a negative integer tie number associated with a tied native file or 0. If Y is

negative, monadic �NXLATE returns the current translation vector associated with the

corresponding native file. If specified, the left argument X is a 256-element vector of

integers that specifies a new translate vector. In this case, the old translate vector is

returned as a shy result. If Y is 0, it refers to the translate vector used by �DR to

convert to and from character data.

The system treats a translate vector with value (Ι256)-�IO as meaning no

translation and thus provides raw input/output bypassing the whole translation process.

The default translation vector established at �NTIE or �NCREATE time, maps �AV

characters to their corresponding ANSI positions and is derived from the mapping

defined in the current output translation table (normally WIN.DOT)

Between them, ANSI and RAW translations should cater for most uses.

Unicode Edition

�NXLATE is relevant in the Unicode Edition only to process Native Files that contain

characters expressed as indices into �AV, such as files written by the Classic Edition.

In the Unicode Edition, when reading data from a Native File using conversion code

82, incoming bytes are translated first to �AV indices using the translation table

specified by �NXLATE, and then to type 80, 160 or 320 using �AVU. When writing

data to a Native File using conversion code 82, characters are converted using these

two translation tables in reverse.

 Chapter 3: Language Enhancements 73

Terminal Control: (�ML)(�ML)(�ML)(�ML) R��TCR��TCR��TCR��TC
�TC is a deprecated feature and is replaced by ⒶUCS (see note).

�TC is a simple three element vector. If �ML < 3 this is ordered as follows:

 �TC[1] - Backspace

 �TC[2] - Linefeed

 �TC[3] - Newline

Note that �TCº�AV[�IO+Ι3] for �ML< 3 .

If �ML Ö 3 the order of the elements of �TC is instead compatible with IBM's

APL2:

 �TC[1] - Backspace

 �TC[2] - Newline

 �TC[3] - Linefeed

Elements of �TC beyond 3 are not defined but are reserved.

Note

With the introduction of �UCS in Version 12.0, the use of �TC is discouraged and it is

strongly recommended that you generate control characters using �UCS instead. This

recommendation holds true even if you continue to use the Classic Edition.

Control Character Old New

Backspace �TC[1] �UCS 8

Linefeed �TC[2] (�ML<3)
�TC[3] (�MLÖ3)

�UCS 10

Newline �TC[3] (�ML<3)
�TC[2] (�MLÖ3)

�UCS 13

 Dyalog APL/W Version 12.0 Release Notes 74

Unicode Convert: R�{X} �UCS YR�{X} �UCS YR�{X} �UCS YR�{X} �UCS Y
�UCS converts (Unicode) characters into integers and vice versa.

The optional left argument X is a character vector containing the name of a variable-

length Unicode encoding scheme which must be one of:

• 'UTF-8'
• 'UTF-16'
• 'UTF-32'

If not, a DOMAIN ERROR is issued.

If X is omitted, Y is a simple character or integer array, and the result R is a simple

integer or character array with the same rank and shape as Y.

If X is specified, Y must be a simple character or integer vector, and the result R is a

simple integer or character vector.

Monadic �UCS�UCS�UCS�UCS
Used monadically, �UCS simply converts characters to Unicode code points and vice-

versa.

With a few exceptions, the first 256 Unicode code points correspond to the ANSI

character set.

 �UCS 'Hello World'
72 101 108 108 111 32 87 111 114 108 100

 �UCS 2 11Ρ72 101 108 108 111 32 87 111 114 108 100
Hello World
Hello World

The code points for the Greek alphabet are situated in the 900's:

 �UCS '��� ���� ���!"�'
954 945 955 951 956 941 961 945 32 949 955 955 940 948 945

Thanks to work done by the APL Standards committee in the previous millennium,

Unicode also contains the APL character set. For example:

 �UCS 123 40 43 47 9077 41 247 9076 9077 125
{(+/Ω)÷ΡΩ}

 Chapter 3: Language Enhancements 75

Dyadic �UCS�UCS�UCS�UCS
Dyadic �UCS is used to translate between Unicode characters and one of three

standard variable-length Unicode encoding schemes, UTF-8, UTF-16 and UTF-32.

These represent a Unicode character string as a vector of 1-byte (UTF-8), 2-byte (UTF-

16) and 4-byte (UTF-32) signed integer values respectively.

 'UTF-8' �UCS 'ABC'
65 66 67
 'UTF-8' �UCS 'ABCÆØÅ'
65 66 67 195 134 195 152 195 133
 'UTF-8' �UCS 195 134, 195 152, 195 133
ÆØÅ

 'UTF-8' �UCS '#��� ���'
206 179 206 181 206 185 206 177 32 207 131 206 191 207 133
 'UTF-16' �UCS '#��� ���'
947 949 953 945 32 963 959 965
 'UTF-32' �UCS '#��� ���'
947 949 953 945 32 963 959 965

Because integers are signed, numbers greater than 127 will be represented as 2-byte

integers (type 163), and are thus not suitable for writing directly to a native file. To

write the above data to file, the easiest solution is to use �UCS to convert the data to 1-

byte characters and append this data to the file:

 (�UCS 'UTF-8' �UCS 'ABCÆØÅ') �NAPPEND tn

Note regarding UTF-16: For most characters in the first plane of Unicode (0000-

FFFF), UTF-16 and UCS-2 are identical. However, UTF-16 has the potential to encode

all Unicode characters, by using more than 2 bytes for characters outside plane 1.

 'UTF-16' �UCS 'ABCÆØÅ�	'
65 66 67 198 216 197 9042 9035
 ��unihan��UCS (2×2*16)+Ι3 ? x20001-x200034

 'UTF-16' �UCS unihan
55360 56321 55360 56322 55360 56323

Translation Error
�UCS will generate TRANSLATION ERROR (event number 92) if the argument

cannot be converted or, in the Classic Edition, if the result is not in �AV.

4 See for example http://unicode.org/cgi-bin/GetUnihanData.pl?codepoint=20001

 Dyalog APL/W Version 12.0 Release Notes 76

 77

C H A P T E R 4

New Session Features

APL Keyboard

Introduction
Unicode Edition supports the use of standard Windows keyboards that have the

additional capability to generate APL characters when the user presses Ctrl, Alt, AltGr

(or some other combination of meta keys) in combination with the normal character

keys.

Version 12.0 is supplied with two sets of such keyboards (one using Ctrl and one using

AltGr) for a range of different languages as listed below. These keyboards were created

using the Microsoft Keyboard Layout Creator (MSKLC) and you may use the same

tool to customise one of the supplied keyboards or to create a new one..

 Dyalog APL/W Version 12.0 Release Notes 78

Installation
During the Installation of Dyalog Version 12.0 Unicode Edition, setup installs one or

two APL keyboard layouts onto your system. These keyboard layouts are installed as

additional services for your default Input Language.

The following table lists the APL keyboards included with Dyalog APL Version 12.0

Unicode Edition at the time of publication. Other keyboards will be included as they

are developed.

Ctrl Keyboards AltGr Keyboards

Danish - Dyalog Ctrl Danish - Dyalog AtGr

Finnish - Dyalog Ctrl Finnish - Dyalog AltGr

French - Dyalog Ctrl French - Dyalog AltGr

German - Dyalog Ctrl German Dyalog AltGr

Icelandic - Dyalog Ctrl

Italian - Dyalog Ctrl Italian - Dyalog AltGr

Norwegian - Dyalog Ctrl

Russian - Dyalog Ctrl

Swedish - Dyalog Ctrl

UK - Dyalog Ctrl UK - Dyalog AltGr

US - Dyalog Ctrl US - Dyalog AltGr

Setup automatically installs only those keyboards that correspond to your default Input

Language, as specified via Control Panel/Regional and Language Options.

Note that if your default input language is not one of those listed in the table, Seup will

not install any APL keyboards. However, you may create your own layout (or adapt

one of the existing ones) using MSKLC).

 Chapter 4: New Session Features 79

The following picture illustrates the Text Services and Input Languages configuration

pane after installing Unicode Edition onto a Windows XP system on which the default

Input Language is English (United Kingdom). Incidentally, on this particular system,

the Danish and Greek languages are also installed.

 Dyalog APL/W Version 12.0 Release Notes 80

Configuring your APL Keyboard for Use
There are 3 different ways to use your APL keyboard:

1. Make the APL keyboard your default Windows keyboard (for all applications)

2. Configure APL to select your APL keyboard on start-up

3. Manually select your APL keyboard for use with your APL session window

every time you start APL.

Making your APL Keyboard the default Windows keyboard

Both the Dyalog AltGr and Dyalog Ctrl keyboard layouts are designed to be fully

compatible with your standard keyboard and you may adopt one of these as your

default Windows keyboard. To do this, simply make it the Default Input Language as

illustrated by the next 2 pictures. Note that the default keyboard layout is shown in

bold..

 Chapter 4: New Session Features 81

To change your default keyboard (Windows XP), open Control Panel/Regional and

Languages, select the Languages tab and click Details. This brings up the Text

Services and Input Languages dialog box shown below.

Select your choice of APL keyboard from the drop-down list as illustrated.

 Dyalog APL/W Version 12.0 Release Notes 82

If you wish to, you can select a keystroke to enable you to select it quickly from the

keyboard.

 Chapter 4: New Session Features 83

Automatic Keyboard Selection

Unicode Edition can optionally select your APL keyboard each time you start APL. To

achieve this, open the Unicode Input configuration pane (Options/Configure/Unicode

Input) then:

In the Keyboard drop-drown, select one of your installed APL keyboards.

Enable the Activate selected keyboard checkbox

Click OK

The value of the checkbox and the name of your chosen keyboard are saved in registry

keys named InitialKeyboardLayoutInUse and

InitialKeyboardLayout.

The choices shown in the above picture will be reflected by the following values:

InitialKeyboardLayoutInUse = 1

InitialKeyboardLayout = " UK - Dyalog AltGr"

 Dyalog APL/W Version 12.0 Release Notes 84

Manual Keyboard Selection

Each time you start APL, the Session window will be associated with your current

Windows keyboard layout. This will be either your default keyboard, or the one you

most recently selected from the Language Bar.

On start-up, Unicode Edition tests your current keyboard to see if it includes any

definitions that will generate an APL symbol. If the current keyboard is incapable of

capable of generating APL symbols, the system will display the following message

box.

You can switch to an APL keyboard using the Language Bar, as illustrated in the

following picture:

On-Screen Keyboard
Included with Dyalog APL Version 12.0 is the Comfort On-Screen Keyboard 2.1

which is specially configured for use with Dyalog APL (Unicode Edition) and

distributed under a licence agreement with Comfort Software.

The On-Screen keyboard is highly configurable and supports a wide range of visual

effects including different colour schemes and transparency options.

Not only does it support a large number of standard physical keyboards, but it includes

a tool to design your own layout corresponding to the actual keyboard attached to your

computer.

 Chapter 4: New Session Features 85

You may choose to have the On-Screen keyboard permanently shown or have it pop-

up on a specific keystroke or when you press and hold Shift, Ctrl or Alt, and there is a

corresponding variety of ways to have it disappear.

The following pictures illustrate the appearance of a UK - Dyalog AltGr keyboard, in

Normal, AltGr and AltGr+Shift modes.

Normal

AltGr Mode

AltGr+Shift

 Dyalog APL/W Version 12.0 Release Notes 86

Language Bar
The Language Bar is an optional window which is docked to the Session Window, to

make it easy to pick APL symbols without using the keyboard.

If you hover the mouse pointer over a symbol in the APL Language Bar, a pop-up tip is

displayed to remind you of its usage. If you click on a symbol in the Language Bar,

that symbol is inserted into the current line in the Session.

Keyboard Shortcuts
The Dyalog Development Environment provides a number of shortcut keys that may

be used to perform actions. These are identified by 2-character codes; for example the

action to start the Tracer is identified by the code <TC>, and mapped to user-

configurable keystrokes.

In the Unicode Edition, Keyboard Shortcuts are defined using

Options/Configure/Keyboard Shortcuts and stored in the Windows Registry.

To the right of the last symbol in the Language Bar is the Keyboard Shortcut icon

If you hover the mouse over this icon, a pop-up tip is displayed to remind you of your

keyboard shortcuts, as illustrated below.

 Chapter 4: New Session Features 87

If you click on the Keyboard Shortcut icon , the Options/Configure/Keyboard

Shortcuts dialog box is displayed. This allows you to change your keyboard shortcut

settings.

 Dyalog APL/W Version 12.0 Release Notes 88

New Help System and Documentation Center
The Dyalog APL Version 12.0 help system is packaged as a single Microsoft HTML

Help compiled help file named help\dyalog.chm.

Documentation Center

In the same help sub-directory, you will find the complete collection of system

documentation in PDF format which may conveniently be accessed via the

Documentation Center menu item.

Help Menu

Label Action Description

Documentation

Center

[DocCenter] Opens your web browser on

help\index.html which displays an index

to the on-line PDF documentation and

selected internet links.

Latest

Enhancements

[RelNotes] Opens help\dyalog.chm, starting at the

first topic in the Version 12.0 Release

Notes section. Note that the Version

11.0 Release Notes are also included.

Language Help [LangHelp] Opens help\dyalog.chm, starting at the

first topic in the Language Reference.

Gui Help [GuiHelp] Opens help\dyalog.chm, starting at the

first topic in the Object Reference.

Dyalog Web

Site

[DyalogWeb] Opens your web browser on the Dyalog

home page.

Email Dyalog [DyalogEmail] Opens your email client and creates a

new message to Dyalog Support, with

information about the Version of Dyalog

APL you are running.

About Dyalog

APL

[About] Displays an About dialog box

 Chapter 4: New Session Features 89

New Configuration Dialogs

Unicode Input
Unicode Edition can optionally select your APL keyboard each time you start APL.

To choose this option, open Options/Configure/Unicode Input. In the Keyboard drop-

drown, select one of your installed APL keyboards, enable the Activate selected

keyboard checkbox, then click OK

Label Parameter Description

Activate

selected

keyboard

InitialKeyboardLayoutInUse 1 = automatically select the specified

APL keyboard on startup.

0 = no action

Keyboard InitialKeyboardLayout the name of the APL keyboard to be

selected.

 Dyalog APL/W Version 12.0 Release Notes 90

Keyboard Shortcuts
The Dyalog Development Environment provides a number of shortcut keys that may

be used to perform actions. These are identified by 2-character codes; for example the

action to start the Tracer is identified by the code <TC>, and mapped to user-

configurable keystrokes. In the Unicode Edition, Keyboard Shortcuts are defined using

Options/Configure/Keyboard Shortcuts and stored in the Windows Registry.

To alter the keystroke associated with a particular action, simply select the action

required and press the keystroke. For example, to change the keystroke associated with

the action <UA> (undo all changes) from (None) to Ctrl+Shift+u, simply select the

corresponding row in the list and press Ctrl+Shift+u. If Confirm before Overwrite is

checked, you will be prompted to confirm or cancel before each and every change is

written back to the registry.

 Chapter 4: New Session Features 91

SALT
SALT is the Simple APL Library Toolkit, a simple source code management system

for Classes and script-based Namespaces. SPICE uses SALT to manage development

tools which “plug in” to the Dyalog session

 Dyalog APL/W Version 12.0 Release Notes 92

Label Parameter Description

Enable

Salt

AddSALT Specifies whether or not SALT is enabled

Enable

Spice

AddSPICE Specifies whether or not SPICE is enabled. Note that

SPICE cannot be enabled without SALT.

Compare

command

line

CompareCMD The command line for a 3
rd

 party file comparison tool to

be used to compare two versions of a file. See note.

Editor Editor Name of the program to be used to edit script files (default

"Notepad").

Class

source

folders

SourceFolder Sets the SALT working directory; a list of folders to be

searched for source code.

Configuration dialog: SALT

Compare command line

The default value of “apl” for the Compare command line instructs SALT to use built-

in APL code when comparing two versions of a file. If you have a 3rd party file

comparison tool which can compare UTF-8 files, enter the name of the program here.

For example, if you have installed “Compare It!”, you would enter:

“[ProgramFiles]\Compare It!\wincmp3” (this assumes that the program will take two

parameters containing the names of two files to be compared).

More Information

For more information about using SALT and SPICE, see the SALT and SPICE

manuals, which can be most easily located via the Documentation Centre.

 Chapter 4: New Session Features 93

Edit Window Tools

The Edit Window now has a toolbar to simplify frequently used operations, namely:

• Toggle line numbers

• Comment selected lines

• Remove comments from selected lines

• Search

 Dyalog APL/W Version 12.0 Release Notes 94

SharpPlot Graphics

Introduction
Included with Version 12 (32-bit Windows versions only with the Microsoft .Net

Framework Version 2.0 or later installed) is the SharpPlot graphics library which is

part of the RainPro graphics package.

The Version 12.0 Session includes 4 buttons which use SharpPlot to generate simple

graphical pictures of the contents of the Current Object (identified by the name under

or to the left of the cursor).

For example, if you have a numerical matrix in a variable called MAT, you can plot it

by first positioning the cursor on the name MAT in the Session window, and then

clicking one of the 4 graphical buttons in the Session toolbar.

Data Structures
The charting function can plot variables with the following data structures:

• a simple numeric vector

• a vector of simple numeric vectors

• a simple numeric matrix

• a matrix whose first row contains simple character vectors and whose other

elements are simple numerics. In bar and line charts, the column headings in

row 1 are used as x-axis labels.

• a matrix whose first column contains simple character vectors and whose

other elements are simple numerics. In bar and line charts, the row headings in

column 1 are used as legends to annotate the different series.

• a matrix whose first row and first column both contain simple character

vectors and whose other elements are simple numerics. In bar and line charts,

the column headings in row 1 are used as x-axis labels, and the row headings

in column 1 are used as legends annotate the different series.

 Chapter 4: New Session Features 95

Examples

Bar Chart

 Wine_Prices
 1961 1964 1966
 Lafite 8800 1342 1210
 Latour 15400 2357.5 4600
 Margaux 5980 672.5 920
 Mouton Rothschild 6710 713 2070
 Haut-Brion 13225 1840 1323

 Dyalog APL/W Version 12.0 Release Notes 96

Line Chart

 First_Growths
 1961 1964 1966 1970 1975 1976 1978 ...
 Lafite 8800 1342 1210 605 1380 2070 920 ...
 Latour 15400 2357.5 4600 2760 1552 978 1058 ...
 Margaux 5980 672.5 920 632 900 800 1208 ...

 Chapter 4: New Session Features 97

Implementation
The SharpPlot tools are implemented by four buttons in the Session toolbar. Each

button has a Select callback which runs the function �SE.Chart.DoChart. This

runs �SE.Chart.Do which constructs and then runs a function named

�SE.Chart.MyChart.

�SE.Chart.MyChart uses an instance of the SharpPlot graphics class to produce a

chart of your data, which it saves as a temporary file. It then calls the SharpPlot viewer

to display the file on your screen.

SharpPlot is a library of graphical subroutines, (originally written in APL and machine-

translated into C#) which is implemented as a .Net Namespace named Causeway and

supplied in \bin\sharpplot.dll in the Dyalog program directory.

Notes
For further information, please see

http://www.sharpplot.com/Docs/default.aspx.

Although �SE.Chart.MyChart is overwritten by successive uses of the graphical

buttons, it is deliberately not erased each time. This allows you to use MyChart as a

simple template to develop your own custom graphics function.

The image is stored in Microsoft Enhanced Metafile Format in a temporary file whose

name and location are generated automatically. The system does not delete the

temporary file after use. For further details, See System.IO.Path.GetTempFileName.

The default program used to display the EMF file is SharpView.exe. You can opt

to use a different EMF viewer by setting the Charts\ViewCMD registry key to name

another program, such as Windows Picture and Fax Viewer.

An attempt to plot the contents of a variables with an unsupported data structure (see

above) is handled entirely by error trapping and will result in an error message box and

perhaps messages in the Status window.

 Dyalog APL/W Version 12.0 Release Notes 98

 99

C H A P T E R 5

Unicode and the Dyalog GUI

The Unicode Edition allows users to enter any characters using the Dyalog APL GUI.

This capability is reflected by some changes to certain Properties and Events, notably

the KeyPress Event. These changes are described in this section.

 Dyalog APL/W Version 12.0 Release Notes 100

KeyPressKeyPressKeyPressKeyPress Event 22

Applies to ActiveXControl, Animation, Button, Calendar, ColorButton, Combo,

ComboEx, DateTimePicker, Edit, Form, Grid, Group, List, ListView,

MDIClient, ProgressBar, PropertyPage, RichEdit, Scroll, Spinner,

SubForm, TrackBar, TreeView

If enabled, this event is generated when the user presses and releases a key on the

keyboard. It is reported for whichever object has the keyboard focus at the time.

The event message reported as the result of �DQ, or supplied as the right argument to

your callback function, is a 6-element vector as follows :

[1] Object: ref or character vector

[2] Event code: 'KeyPress' or 22

[3] Input Code: character scalar or vector

[4] Character Code: integer scalar

[5] Key Number: integer scalar

[6] Shift State: integer scalar

If the keystroke resolves to a character, the Input Code is a character scalar. If the

keystroke resolves to a command recognised by Dyalog APL, such as UC (Up Cursor)

or ER (Enter) the Input Code contains the corresponding 2-element character vector. In

the Classic Edition, the resolution of the keystroke to a character (in �AV) or to a

command, is performed using the Input Translate Table. In the Unicode Edition, the

resolution is performed by the Operating System. However, if the keystroke resolves to

a navigation or control key (such as Cursor Up or Enter), the same 2-character

"command" is reported. Note however that commands that are purely internal to

Dyalog APL (such as Trace, commonly Ctrl+Enter) are not reported as such and the

Input Code will be empty.

In the Unicode Edition, the Character Code is the Unicode code point of the character

that the user entered. In the Classic Edition, it is a number in the range 0-255 which

specifies the ASCII character that would normally be generated by the keystroke, and

is independent of the Input Translate Table. If there is no corresponding ASCII

character, the ASCII code reported is 0.

The key number is the physical key number reported by Windows when the key is

pressed.

 Chapter 5: Unicode and the Dyalog GUI 101

The Shift State indicates which (if any) of the Shift, Ctrl and Alt keys are down at the

same time as the key is pressed. It is the sum of the following numbers :

 Shift key down : 1

 Ctrl key down : 2

 Alt key down : 4

Thus a Shift State of 3 indicates that the user has pressed the key in conjunction with

both the Shift and Ctrl keys. A Shift State of 0 indicates that the user pressed the key

on its own.

Example

 ¯ Key;Form1
[1] 'Form1'�WC'Form'('Event' 'KeyPress' 'Keycb')
[2] �DQ'Form1'
 ¯
 ¯ Keycb msg
[1] DISPLAY msg
 ¯

On running function Key, the following output will be displayed as a result of the user

pressing:the following 5 keys in succession:

1. "a"

2. Shift+"a"

3. Cursor Up

4. β ("b" using a Greek keyboard)

5. Ι (Ctrl+"i" using a UK APL keyboard)

Unicode Edition

.E-----------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| a 97 65 0 |
| '-----' '--------' - |
'!-----------------------------'
.E-----------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| A 65 65 1 |
| '-----' '--------' - |
'!-----------------------------'
.E-------------------------------.
| .E----. .E-------. .E-. |
| |Form1| |KeyPress| |UC| 0 38 0 |
| '-----' '--------' '--' |
'!-------------------------------'

 Dyalog APL/W Version 12.0 Release Notes 102

.E------------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| � 946 66 0 |
| '-----' '--------' |
'!------------------------------'
.E-------------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| Ι 9075 73 2 |
| '-----' '--------' - |
'!-------------------------------'

Classic Edition

.E-----------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| a 97 65 0 |
| '-----' '--------' - |
'!-----------------------------'
.E-----------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| A 65 65 1 |
| '-----' '--------' - |
'!-----------------------------'
.E-------------------------------.
| .E----. .E-------. .E-. |
| |Form1| |KeyPress| |UC| 0 38 0 |
| '-----' '--------' '--' |
'!-------------------------------'
.E--------------------------------.
| .E----. .E-------. .æ. |
| |Form1| |KeyPress| | | 223 66 0 |
| '-----' '--------' '-' |
'!--------------------------------'
.E----------------------------.
| .E----. .E-------. |
| |Form1| |KeyPress| Ι 9 73 2 |
| '-----' '--------' - |
'!----------------------------'

 103

Index

����
�AV.. 17, 22

�AVU 22, 32, 41, 68, 71

�DR.. 21

�FCOPY... 2, 36

�FCREATE.. 5, 37

�MAP ... 40

�NA.. 19, 42

�UCS ... 5, 19, 73

A

address size

of component file... 5

APL

characters... 31

appending to native file 68

atomic vector 17, 22, 31

atomic vector - Unicode 22, 32

atomic vector index

idiom.. 5

C

Causeway... 3

Classic Edition................... 1, 26, 28, 31, 72, 73

Compatibility... 9

component files ... 1

compatibility.. 9

Conga .. 4

copying component files............................ 2, 36

creating component files................................ 37

D

data representation... 21

dyadic .. 35

monadic ... 34

Documentation Centre................................... 92

D

dynamic link libraries 42

F

file

copy ... 36

create.. 37

files

APL component files 36, 37

mapped... 40

G

grade-down function

monadic ... 26

grade-up function

monadic ... 28

I
Input Method Editor 16

Interoperability .. 9

J

journaling

component files.. 1

K

keyboard shortcuts 16, 86, 87, 90

keyboards... 15

KeyPress event .. 100

Kibitzer .. 2

L

language bar

Session Window 3, 86

M

mapped files... 40

matrix iota idiom ... 5

monadic primitive functions

grade down .. 26

grade up ... 28

MPUT utility.. 40

MSKLC ... 15

104 Alphabetic Index

N

name association19, 42

names ...17

native file

append ..68

read...69

replace ..70

translate ..72

native files..23

NewLeaf...3

O

On-Screen Keyboard..2

P

performance improvements..............................5

R

RainPro ..3

reading native files ...69

replacing data in native files70

S

SALT ...4, 91

SharpPlot..3, 94

SPICE...91

SubVersion...4

T

terminal control vector73

translating native files72

TRANSLATION ERROR..................21, 33, 41

U

underscored alphabetic characters..................30

underscores...17

Unicode ..13

Unicode Convert ..19

Unicode Edition1, 5, 26, 28, 31, 70, 72

Unicode support

component files ..2

UTF-16...75

UTF-32...75

UTF-8...75

V

viewcmd registry entry...................................97

W

wide character ..49

Dyalog Ltd
South Barn
Minchens Court
Minchens Lane
Bramley
Hampshire
RG26 5BH
United Kingdom
www.dyalog.com

